
A Concurrency Model for JavaScript with Cooperative
Cancellation

Tian Zhao
tzhao@uwm.edu

University of Wisconsin-Milwaukee
Milwaukee, Wisconsin, USA

Yonglun Li
yli@uwm.edu

University of Wisconsin-Milwaukee
Milwaukee, Wisconsin, USA

Abstract
This paper proposes a concurrency model for JavaScript

with thread-like abstractions and cooperative cancellation.
JavaScript uses an event-driven model, where an active com-
putation runs until it completes or blocks for an event while
concurrent computations wait for other events as callbacks.
With the introduction of Promises, the control flow of call-
backs can be written in a more direct style. However, the
event-based model is still a source of confusion with regard
to execution order, race conditions, and termination.
The thread model is a familiar concept to programmers

and can help reduce concurrency errors in JavaScript pro-
grams. This work is a library-based design, which uses an
abstraction based on the reader monad to pass a thread ID
through a thread’s computation. A thread can be cancelled,
paused, and resumed with its thread ID. This design allows
hierarchical cancellation where a child thread is cancelled if
its parent is cancelled. It also defines synchronization primi-
tives to protect shared states. A formal semantics is included
to give a precise definition of the proposed model.

CCS Concepts: •Computingmethodologies→Concur-
rent computing methodologies; • Software and its en-
gineering → Concurrent programming structures.

Keywords: asynchronous programming, thread, JavaScript

ACM Reference Format:
Tian Zhao and Yonglun Li. 2021. AConcurrencyModel for JavaScript
with Cooperative Cancellation. In Proceedings of the 14th ACM SIG-
PLAN International Conference on Software Language Engineering
(SLE ’21), October 17–18, 2021, Chicago, IL, USA. ACM, New York,
NY, USA, 13 pages. https://doi.org/10.1145/3486608.3486911

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SLE ’21, October 17–18, 2021, Chicago, IL, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-9111-5/21/10. . . $15.00
https://doi.org/10.1145/3486608.3486911

1 Introduction
JavaScript provides concurrency through its event loop,

where a computation either runs or waits for an event as
a listener. As JavaScript applications grow in complexity, it
is common to have numerous callbacks with complex de-
pendencies, which makes it difficult to identify concurrent
computations. The introduction of Promises [5] allowed the
control flow of event callbacks be written in a more direct
style. A Promise object can encapsulate an event callback.
Once constructed, the Promise object starts immediately
and upon completion, it either resolves successfully with a
result or rejects with an error value. When combined with
async and await keywords, the Promise abstraction allows
asynchronous operations be composed with synchronous
operations in a sequential program.
It may seem unnecessary to provide a thread-based con-

currency model for JavaScript since Promises already be-
have like threads with non-preemptive scheduling and the
methods to wait for their completion such as race() and
all(). However, a Promise does not provide utilities for
thread synchronization and for cancellation. User-defined
constructs for such purposes may not have well-defined
semantics, which can result in unexpected behavior. With-
out proper cancellation, a JavaScript program may contain
abandoned computations running in the background, pro-
ducing unexpected side effects. In this paper, we propose
a concurrency model implemented as a library with a for-
mal semantics of thread synchronization and cancellation. A
thread, once started, runs until it completes, is blocked on
an event, is paused, or is cancelled. A paused thread can be
resumed or cancelled.

In this paper, we make the following contributions.
• We motivate the need of a JavaScript concurrency
model with cancellation semantics in Section 2.

• We propose a library-based design1 using the reader
monad to represent thread-like abstractions in Sec-
tion 3. The reader monad implicitly passes a thread ID
throughout a computation so that it can be cancelled,
paused, and resumed.

• We define a primitive like Haskell’s MVar and show
how it supports communication and cancellation in
Section 3.5 and how other primitives such as bounded
buffer can be defined in Section 5.

1https://github.com/tianzhao/thread

https://doi.org/10.1145/3486608.3486911
https://doi.org/10.1145/3486608.3486911
https://github.com/tianzhao/thread

SLE ’21, October 17–18, 2021, Chicago, IL, USA Tian Zhao and Yonglun Li

• We give an operational semantics of our concurrency
model in Section 4.

• We discuss the usability and overhead in Section 6.

2 Thread-like Concurrency
JavaScript concurrency is based on event handling via its

event loop. Event sources behave like stateful objects that
dispatch events to registered listeners. The desire to have
thread-like behavior resulted in libraries such as node-fibers,
which is an implementation of coroutine in node-js with non-
preemptive scheduling. This work is not to replicate such
capabilities, or suggest a solution of parallel computation
using web workers, or leverage the idle time of event-loop
for synchronous operations. Our focus is on thread-like ab-
straction for asynchronous computation, where each thread
continues to run until it is blocked, paused, or cancelled. Our
goal is help reduce concurrency errors in JavaScript by bring-
ing back the familiar concepts of thread, synchronization
primitives, and cancellation mechanisms.
Event races are common types of concurrency errors in

JavaScript programs where multiple events arrive in an or-
der or at a rate that is not expected by the programming
logic, resulting in unexpected effects [11, 19, 21]. For exam-
ple, event-race errors can be caused by the concurrent access
to an external resource (e.g. a web service) if it does not
protect against such access. These errors can be difficult to
debug since they are reflected in the incorrect states at the
external resource instead of at the JavaScript program. Fur-
thermore, research indicates that even well-tested JavaScript
applications often do not adequately cover event-dependent
or asynchronous callbacks [8], inviting alternative methods
to identify issues in such constructs.

While Promises [5] have helped reduce deeply-nested call-
backs, its semantics is still complex [14, 17] and the num-
ber and breadth of issues reported on platforms like Stack
Overflow indicate that users often struggle to understand
its proper use. Static methods like Promise Graph [15] were
proposed to track when Promises are defined and activat-
ed/resolved as a step toward helping developers identify
issues, it still does not indicate when pieces may execute in
parallel and may cause concurrency errors.
We argue that the thread abstraction has several advan-

tages over Promises.

• The first advantage is conceptual. To run an opera-
tion in a separate thread, one must start the thread
explicitly. However, a Promise object is concurrent by
default. If a Promise object is run for its side effect,
one can easily forget to sequence it (e.g. using await)
without realizing that it may run in a different order.

• Secondly, since threads have a well-defined abstraction
boundary, it is easier to recognize concurrent access
to shared resources so that synchronization primitives
can be used to protect their access.

• Thirdly, Promise objects do not have methods for can-
cellation. While we can use the race()method (which
waits for and returns the first value produced by a col-
lection of Promise objects) to implement a task such
as to timeout an asynchronous operation, the opera-
tion does not actually stop – only its results are aban-
doned. Though JavaScript is not preemptive, cancelling
a thread at the earliest opportunity can reduce unin-
tended side effects from the abandoned operations.

3 Concurrency with Cancellation
Promises are similar to the continuation monads for con-

currency [4, 13], which allow asynchronous callbacks be
chained together without deeply nested scopes. One differ-
ence is that a Promise object, once constructed, starts imme-
diately while continuation monads are started explicitly.

new Promise ((resolve , reject) => {

// call resolve with results

// or call reject with error

)}

A Promise is instantiated with an executor function with
two parameters: resolve and reject. A Promise runs exactly
once, which results in a fulfilled state (if resolve is called) or a
rejected state (if reject is called or an exception is thrown). If
neither functions are called, then the Promise object remains
in a pending state. Promises can be sequenced using then
method and exceptions can be handled using catch method.

p.then(x => { /* returns a promise */ })

.catch(e => { /* handle error */ })

Our design is a cancellable concurrency monad with a
thread ID. We implement it as a reader monad that wraps a
function that takes a thread ID (of the type Progress) and
returns a Promise object.

Progress -> Promise a

We define a JavaScript class AsyncM to represent this con-
currency monad.
class AsyncM {

// run :: Progress -> Promise a

constructor (run) { this.run = run; }

// pure :: a -> AsyncM a

static pure = x => new AsyncM (

p => Promise.resolve(x)

)

// fmap :: AsyncM a -> (a -> b) -> AsyncM b

fmap = f => new AsyncM (

p => this.run(p).then(f)

)

//bind :: AsyncM a -> (a->AsyncM b) -> AsyncM b

bind = f => new AsyncM (

p => this.run(p).then(x => f(x).run(p))

)

}

A Concurrency Model for JavaScript with Cooperative Cancellation SLE ’21, October 17–18, 2021, Chicago, IL, USA

The static method pure converts a constant value to an
AsyncM that always return that value. The fmap method ap-
plies a function to this AsyncM while the bindmethod com-
poses this AsyncM with a function that returns an AsyncM.
These methods allow AsyncMs to be composed so that a
Progress value can be passed implicitly through the AsyncM
computation. This style of composition does come with syn-
tactic overhead since it prevents the direct use of async and
await keywords for composing Promises.

// lift :: ((a -> ()) -> ()) -> AsyncM a

static lift = f => new AsyncM (p =>

new Promise ((resolve , reject) => {

// cancel by throwing an exception

let c = _ => reject("interrupted");

if (!p.cancelled) { // check thread status

p.addCanceller(c); // add a canceller

// remove canceller when 'f' completes

let k = x => {

p.removeCanceller(c)

resolve(x);

}

f(k) // starts an asynchronous operation

}

else c(); // cancel if the thread is dead

})

)

static timeout = n => AsyncM.lift(k =>

setTimeout(k, n))

An AsyncM that runs an asynchronous operation is con-
structed with the liftmethod, whose parameter 𝑓 performs
an asynchronous operation such as setTimeout. The lift
method also enables cancellation, which may happen when
this AsyncM is blocked on its call to 𝑓 . The AsyncM returns a
resolved Promise if 𝑓 completes with a result and it returns
a rejected Promise if it is cancelled. For simplicity, the error
handling of 𝑓 is not described, which involves passing 𝑓 a
handler ℎ so that if 𝑓 raises an error 𝑒 , then ℎ removes the
canceller 𝑐 and calls the reject function with 𝑒 .

3.1 Thread ID and Cancellation
The thread IDs are used for cancellation. A thread ID is a

Progress object, which forms a tree, where each tree node
has a cancellation flag and a set of canceller functions.

class Progress {

constructor(parent) {

if (parent) {

this.parent = parent;

parent.children.push(this);

}}

cancelled = false

children = []

cancellers = [] }

Figure 1. Thread cancellation through timeout.

To start a thread, we simply run an AsyncM with a new
Progress object and return it.
class AsyncM {

start = _ => {

let p = new Progress ()

let f = _ => this.run(p)

setTimeout(f, 0) // start f asynchronously

return p

}}

When a lifted AsyncM is run with a Progress object 𝑝 , a
canceller function is added to 𝑝 . If the AsyncM completes,
the canceller is removed. If the AsyncM is cancelled before
its completion, then the canceller runs, which causes the
AsyncM to return a rejected Promise.

For example, the variable𝑚 below fetches data using an
𝑎 𝑗𝑎𝑥 call, performs some computation, and sends the results
for display. We start𝑚 with a thread ID 𝑡 , which is used to
cancel𝑚 if it is not completed within a second.
let m = AsyncM.lift(ajax) // fetch data

.fmap(compute) // synchronous action

.bind(display) // visualize data

let t = m.start () // starts m with thread ID t

AsyncM.timeout (1000)

.fmap(_ => t.cancel ())

.start () // starts a timeout thread

As shown in Figure 1, the timeout thread references the
thread ID of𝑚 and may use it to cancel𝑚 when𝑚 is blocked
on an event (e.g. when𝑚 calls the ajax or display function).
However, like other non-preemptive designs, the timeoutwill
not have immediate effects if it occurs while a synchronous
operation like compute is running.

Unlike a Promise object, which runs immediately after its
composition, the composition of an AsyncM object is sepa-
rate from its execution, which helps identify the concurrent
operations. One can delay the execution of a Promise by
defining a function that returns a Promise (such as an async
function). However, there is no syntactic difference between
calling an async function and calling a regular function. It is
easy to forget the difference between calling an async func-
tion with or without using await to wait for its completion.

SLE ’21, October 17–18, 2021, Chicago, IL, USA Tian Zhao and Yonglun Li

3.2 Asynchronous Exception
When a thread ID 𝑡 is cancelled, an interrupt exception

is sent to the thread running with 𝑡 . This design is similar
to the asynchronous exception of Concurrent Haskell [16],
except that our interrupt exception can only be received at
some locations. In our case, the exception is received immedi-
ately if the thread is blocked, resulting in a rejected Promise.
Otherwise, the exception is received when the thread makes
a blocking call or checks the status of the thread ID. For
example, if a thread cancels another thread, the effect is im-
mediate. However, if a thread cancels itself, there may be
some delay.
The interrupt exceptions may be received by an AsyncM

such as AsyncM.lift(f). When this AsyncM runs, it first
checks whether its Progress 𝑝 is alive. If it is not alive, then
it returns a rejected Promise. Otherwise, it adds a canceller
𝑐 to the progress object 𝑝 so that if 𝑝 is cancelled, then 𝑐 will
be called to cause an interrupt exception.
The interrupt exception of the previous example can be

handled with the catch method as shown below.
class AsyncM {

catch = h => new AsyncM(p =>

this.run(p).catch(h))

}

let m = AsyncM.lift(ajax) // fetch data

.fmap(compute) // synchronous action

.bind(display) // visualize data

.catch(print) // print exception

3.3 Fork and Hierarchical Cancellation
Other than starting an independent thread, we can also

fork a child thread with a Progress object that is a child of
the current Progress. The parent Progress has a reference
to the child progress so that if the parent is cancelled, so is
the child. When the forked thread completes, the reference
from a parent Progress to its child Progress is removed
using the unlink method to avoid memory leak.
class AsyncM {

fork = _ => new AsyncM (async p => {

const p1 = new Progress(p)

// start the thread asynchronously

// unlink the reference from p to p1

// after the thread completes

AsyncM.timeout (0).bind(_ => this).run(p1)

.finally(_ => p1.unlink ());

return p1;

})

}

class Progress {

// remove the parent to child reference

unlink = _ => {

let p = this.parent

if(p) p.children = p.children

.filter(c => c != this)

}

// call all cancellers recursively

cancel = _ => {

this.cancelled = true // set cancel flag

this.cancellers.forEach(c => c())

this.children.forEach(c => c.cancel ())

this.cancellers = [] // clear cancellers

}

}

The cancelmethod of the Progress class sets the cancel-
lation flag, calls each registered canceller to signal interrupts,
and recursively cancels its children.
Using fork, we can run the𝑚 thread in the last example

as a child of the timeout thread so that both threads can be
cancelled by a user action such as pressing a “stop” button.
// run 'm' as a child of the timer thread

let t = m.fork()

.bind(t1 => AsyncM.timeout (1000)

.fmap(_ => {

t1.cancel ()

console.log("timeout")

})

).start ()

// user cancels 'm' and the timer thread

$("#stop").one('click ', _ => t.cancel ())

The above example has 3 possible outcomes:
1. 𝑚 completes,
2. 𝑚 is cancelled by the timer, which prints ‘timeout’

message, and
3. user stops both𝑚 and the timer thread.

If it is inconvenient to use fork and bind, one can also run
threads directly with Progress objects as shown below.
let t = new Progress ()

let t1 = new Progress(t)

m.run(t1) // run m with t1

AsyncM.timeout (1000)

.fmap(_ => {

t1.cancel ()

console.log("timeout")

}).run(t) // run timer with t

$("#stop").one('click ', _ => t.cancel ())

We can also use a Progress like a cancellation token. For
example, we can start a set of threads by calling their run
methods with a Progress 𝑡 or the children of 𝑡 so that any
thread in the group can cancel the group through 𝑡 .

3.4 Pause and Resume Threads
Our threads can be paused and resumed. This is useful

in cases such as debugging and the implementation of user
interfaces. For example, users can pause threads in browser
console to check the states of the program or add controls to

A Concurrency Model for JavaScript with Cooperative Cancellation SLE ’21, October 17–18, 2021, Chicago, IL, USA

user interface to pause and resume animation threads such
as real-time data charts.

$("#pause").on('click ', _ => t.pause())

$("#resume").on('click ', _ => t.resume ())

We can add buttons to the previous example to allow
users to pause and resume the timer and 𝑚 threads. Un-
like thread cancellation, which throws exceptions to the
cancelled threads, thread suspension is based on polling. A
thread returning from a blocking call checks whether it is
paused and if so, it adds its continuation to the progress ob-
ject, on which the pause method is called. This means that
pausing a thread does not suspend its asynchronous calls
but the handlers to the calls.

Like cancellation, thread suspension is hierarchical. If we
pause a thread 𝑡 , then 𝑡 and its children are paused. Also,
while a paused thread can be cancelled, a cancelled thread
cannot be resumed. Pausing a cancelled or completed thread
has no effect. For our example, if t.pause() is called before
the timer and𝑚 complete, then𝑚 may be suspended after
the ajax or display call returns while the timer thread will
not advance beyond the timeout.
To reduce unintended side effects, a thread can only be

resumed by the same Progress that the thread is paused
with. That is, the threads that are paused together can only
be resumed together. For example, if 𝑚 is paused by the
call t.pause(), then it can only be resumed by the call
t.resume(). A thread can be paused or resumed by any
code with access to its thread ID. Thus, it is possible that a
paused thread 𝑡 can remain paused forever, if the thread that
will resume 𝑡 is cancelled.

static lift = f => new AsyncM (

p => new Promise(

(resolve , reject) => {

let c = _ => reject("interrupted");

if (!p.cancelled) {

p.addCanceller(c);

let k = x => {

p.removeCanceller(c)

// suspend the thread if it is paused

if (! p.isPaused(_ => resolve(x)))

resolve(x);

}

f(k)

}

else c();

}

)

)

The lift method above is revised to poll the pause status
of a thread. It checks whether its Progress 𝑝 is paused after

the lifted function f returns and if so, it adds the resolve
continuation to 𝑝 .

class Progress {

paused = false // pause status flag

pending = [] // pending thread continuations

pause = _ => { this.paused = true }

isPaused = k => { // k: thread continuation

if (this.paused) {

this.pending.push(k)

return true

}

else if (this.parent) {

return this.parent.isPaused(k)

}

else {

return false

}

}

// resume paused threads

resume = _ => {

this.paused = false

if (! this.cancelled)

this.pending.forEach(k => setTimeout(k, 0))

this.pending = []

}

}

The Progress class is added a pause-status flag and a list
of the pending thread continuations. The pausemethod sim-
ply sets the status flag to true while the isPaused method
checks the status of this progress and its ancestors recur-
sively and adds the continuation 𝑘 is to the paused Progress.
The resume method restarts paused threads by calling the
pending continuations after a timeout.

3.5 Synchronization Mechanism
In JavaScript, an event race can be caused by the concur-

rent access to shared resources. To help prevent event races,
we include synchronization primitives similar to Haskell’s
MVar, which can be used as locks to protect resources from
concurrent access. For example, in a real-life application2, a
bug was caused by an user interface that sends concurrent
requests to a remote service without support for concurrent
access. If a user sends a new request before the previous re-
quest completes, then the new request will cause an internal
error in the remote service.
The code below illustrates this problem, where the re-

sponse to the request is sent to an user callback cb.

$("#button").on("click", _ => sendRequest(cb))

A simple fix is to use a flag to stop the handler from re-
sponding to the button click before a request completes.

2https://github.com/TryGhost/Ghost/issues/1834

https://github.com/TryGhost/Ghost/issues/1834

SLE ’21, October 17–18, 2021, Chicago, IL, USA Tian Zhao and Yonglun Li

let flag = true

$("#button").on("click", _ => {

if (flag) {

flag = false;

sendRequest(x => {

flag = true

cb(x)

})

}

})

However, this fix is not ideal since some clicks would lead
to a response while others do not. If we want each button
click to trigger a response safely, we can use a synchroniza-
tion primitive like MVar.

A MVar object𝑚 can hold one value and is either empty or
full. A thread that puts value in𝑚 blocks if𝑚 is full. A thread
that takes value from 𝑚 blocks if 𝑚 is empty. If multiple
take (or put) threads are blocked on𝑚, only the first one
on queue is allowed to proceed after𝑚 is filled (or emptied).

let m = new MVar() // create a lock

$("#button").on("click", _ =>

m.put (0) // obtain the lock

.bind(_ => AsyncM.lift(sendRequest))

.bind(x => m.take() // release lock

.fmap(_ => cb(x)))

.start ()

)

In the code above, 𝑚 is used as a lock to ensure that
sendRequest is called once at a time. If the button is clicked
before the previous request completes, the new request will
be blocked on𝑚 until the previous request releases the lock.

Like threads blocked on events, threads blocked on a MVar
can also be cancelled. The put method shown below adds a
canceller 𝑐 to the Progress object 𝑝 if it is blocked (i.e. the
MVar is full) and the canceller is removed when the thread
unblocks (i.e. MVar is emptied). The canceller would remove
the thread from the list of threads pending on the MVar and
throw an exception.

class MVar {

isEmpty = true;

pending = []; // pending put or take threads

// put :: MVar a -> a -> AsyncM ()

put = x => new AsyncM(p => new Promise(

(resolve , reject) => {

if (!this.isEmpty) { // block if not empty

let k = _ => { // 'put' continuation

p.removeCanceller(c)

this._put(x)

setTimeout(resolve , 0) // resume later

}

let c = _ => { // removes pending thread

this.pending =

this.pending.filter(t => t != k)

reject("interrupted"); // raise exception

}

p.addCanceller(c) // enable cancellation

this.pending.push(k)

}

else { // put 'x' and continue if empty

this._put(x)

resolve ()

}

}))

// put 'x' in MVar when it is empty

_put = x => {

this.isEmpty = false

this.value = x

// wake up a pending 'take' thread

if (this.pending.length > 0)

this.pending.shift()()

}

// the 'take' method is similar

}

The take method (details omitted) registers a canceller
(identical to that of the put method) with the Progress 𝑝 if
it is blocked (i.e. the MVar is empty). This canceller will be
removed when the take thread unblocks.

Like other synchronization mechanisms, our MVar is sus-
ceptible to deadlocks. For example, a take thread blocked on
an empty MVar𝑚 is in a deadlock state if it also holds locks
that prevent other threads from putting data in𝑚. However,
since JavaScript is not preemptive, it is less likely to enter
a deadlock state due to non-determinism than a language
with preemptive scheduling.

It may be possible to simulate priority-based scheduling
by assigning a priority level to each thread when it is started.
MVar could be modified so that it wakes up the pending
threads based on their priorities. A thread can then yield to
other threads by blocking itself on the modified MVar.

4 Operational Semantics
In this section, we formalize our design by giving an op-

erational semantics in the style of Concurrent Haskell. This
semantics includes two sets of rules: asynchronous rules for
the reduction of AsyncM, which encodes thread computation
and is possibly blocking, and synchronous rules for other
non-blocking computation.
In Figure 2, we define terms and values. The symbol 𝑉

ranges over values such as constants, thread ID, MVars, func-
tions, and AsyncM values.
The symbol 𝐴 ranges over AsyncM which includes prim-

itives such as pure(𝑉) that returns value 𝑉 , throw(𝑐) that
throws an error 𝑐 , and lift(𝑓) that runs asynchronous func-
tion 𝑓 and waits for its results. AsyncM also includes combi-
nators:𝐴.bind(𝑓) that passes the value of𝐴 to 𝑓 ,𝐴.catch(𝑓)
that catches the error of 𝐴 with 𝑓 , and 𝐴.fork() that runs 𝐴
in a child thread.

A Concurrency Model for JavaScript with Cooperative Cancellation SLE ’21, October 17–18, 2021, Chicago, IL, USA

𝑓 ::= 𝑥 => 𝑀 Functions
𝐴 ::= AsyncM values

| pure(𝑉) return value
| throw(𝑐) throw exception
| lift(𝑓) asynchronous action
| 𝐴.bind(𝑓) monadic bind
| 𝐴.catch(𝑓) handle exception
| 𝐴.fork() fork a child thread
| 𝑚.put(𝑉) put value in MVar
| 𝑚.take() take value from Mvar

𝑉 ::= Value
| 𝑐 constant
| undef undefined value
| 𝑡 thread ID (progress)
| 𝑚 MVar
| 𝑓

| 𝐴

𝑀, 𝑁 ::= Terms
| 𝑉

| 𝑥 variable
| 𝑀.start() start a thread
| 𝑀.cancel() cancel a thread
| 𝑀.pause() pause a thread
| 𝑀.resume() resume a thread
| new MVar allocate MVar
| 𝑀 (𝑁) call
| 𝑀 ? 𝑁1 : 𝑁2 branch
| . . .

𝑡 ::= Thread ID
| 𝑝 root progress
| 𝑡 · 𝑝 child progress

𝑢 ::= Main or thread ID
| 𝜖 ID of main
| 𝑡

Figure 2. The syntax of AsyncM, values, and terms

The symbols 𝑀 and 𝑁 range over terms, which include
values, function call, branch, new MVar, and the term to
start/cancel/pause/resume a thread. We omit other terms
such as 𝑀.bind(𝑓), which should be reduced to the value
𝐴.bind(𝑓) before being reduced as a monad.

The symbol 𝑡 ranges over thread ID, which is either a root
Progress 𝑝 or a child Progress 𝑡 · 𝑝 with 𝑡 as the parent.
For the main program, we use 𝜖 to denote its ID.

4.1 Program Transitions
We define our semantics by describing the transitions be-

tween program states. A program state (Figure 3) is a parallel
composition of threads, MVars, and the cancel/pause/resume
actions on threads.

𝑃,𝑄, 𝑅 ::= States

| L𝑀M𝑢 live thread with ID 𝑢

| L𝑀M•𝑡 stuck thread

| L𝑀M◦𝑡 ready thread

| LM𝑢 completed thread

| ⟨⟩𝑚 empty MVar named𝑚

| ⟨𝑉 ⟩𝑚 MVar𝑚 filled with 𝑉

| J𝑡 cancelK 𝑡 is cancelled

| J𝑡/𝑡𝑖 pauseK 𝑡𝑖 is paused by 𝑡

| J𝑡/𝑡𝑖 resumeK 𝑡𝑖 is resumed by 𝑡

| a𝑥 .𝑃 restriction

| 𝑃 | 𝑄 parallel composition

Figure 3. The syntax of program states

𝑃 | 𝑄 ≡ 𝑄 | 𝑃 (Comm)

𝑃 | (𝑄 | 𝑅) ≡ (𝑃 | 𝑄) | 𝑅 (Assoc)

a𝑥 .a𝑦.𝑃 ≡ a𝑦.a𝑥 .𝑃 (Swap)

(a𝑥 .𝑃) | 𝑄 ≡ a𝑥 .(𝑃 | 𝑄), 𝑥 ∉ 𝑓 𝑛(𝑄) (Extrude)

a𝑥 .𝑃 ≡ a𝑦.𝑃 [𝑦/𝑥], 𝑥 ∉ 𝑓 𝑛(𝑃) (Alpha)

Figure 4. Structural congruence

A thread is either alive L𝑀M𝑢 , stuck L𝑀M•𝑡 , or ready L𝑀M◦𝑡 ,
where the subscript is the thread ID. A live thread is currently
running, the stuck threads are waiting for events or blocked
on MVars, and a ready thread will run when there is no other
live thread. The initial program state is the main thread L𝑀M𝜖 .
A program state can transition to the next state with or

without a label, which is written as: 𝑃
𝛼−→ 𝑄 . The label, if

present, represents an asynchronous event 𝑐 received by the
JavaScript event loop: 𝑃

?𝑐−→ 𝑄 .
The transitions of the program states are supported by the

equivalence relation ≡ defined in Figure 4 – identical to the
one in Concurrent Haskell [16, 20].

The structural transitions of program states are defined in
Figure 5. Since JavaScript is not preemptive, there can be at
most one live thread at any time. To model this behavior, we
place a restriction in Rule (Par) so that the transition from 𝑃

to 𝑄 can cause transition from 𝑃 | 𝑅 to 𝑄 | 𝑅 only if 𝑅 does
not contain live threads. In other words, while a live thread
is running, no other threads can become alive.

SLE ’21, October 17–18, 2021, Chicago, IL, USA Tian Zhao and Yonglun Li

live(L𝑀M𝑢)
live(𝑃)

live(a𝑥 .𝑃)
live(𝑃)

live(𝑃 | 𝑄)
live(𝑄)

live(𝑃 | 𝑄)

𝑃
𝛼−→ 𝑄 ¬live(𝑅)

𝑃 | 𝑅 𝛼−→ 𝑄 | 𝑅
(Par)

𝑃
𝛼−→ 𝑄

a𝑥.𝑃
𝛼−→ a𝑥 .𝑄

(Nu)

𝑃 ≡ 𝑃 ′ 𝑃 ′ 𝛼−→ 𝑄 ′ 𝑄 ′ ≡ 𝑄

𝑃
𝛼−→ 𝑄

(Equiv)

Figure 5. Structural transitions

4.2 Transition Rules
This section explains the transition rules for AsyncM values

(Figure 6), the rules for terms (Figure 7), and the rules for the
actions on threads (Figure 8). The transition rules for AsyncM
values describe the thread computation, which takes place
within an evaluation context E defined below.

E ::= [·] | E.bind(𝑓) | E.catch(𝑓)

Bind and Catch. Rule (Bind) describes how a value is
passed to the sequenced function. Rule (Catch) describes
how an error is caught by a handler. The two propagate
rules describe how values and errors are propagated through
catch and bind.

Fork. Rule (Fork) says that a child thread is forked with
an ID that is the child of the current ID. The child thread
starts in the ready state (denoted by the superscript ◦) so
that the parent thread can continue to run.

Async. Rules (Stuck-Async) and (Async) describe how
the expression lift(𝑓) runs the asynchronous function 𝑓 and
waits for its result 𝑐 as an event. lift(𝑓) first transitions to
a stuck state denoted by the superscript •. After receiving
an event, the stuck thread LE[lift(𝑓)]M•𝑡 transitions to a state
that returns the event value 𝑐 .

MVar. Rule (Put-MVar) says the thread LE[𝑚.put(𝑉)]M𝑏𝑡
fills an empty MVar ⟨⟩𝑚 with its value 𝑉 , where the super-
script 𝑏 means that the thread is either alive or stuck. If𝑚 has
value, then by Rule (Stuck-Put-MVar),𝑚.put(𝑉) transitions
to a stuck state. Rules for𝑚.take() are similar.

Terms. The transitions of terms (shown in Figure 7) take
place within the context F defined below.

F ::= [·] | F (𝑀) | 𝑓 (F) | F ?𝑀1 : 𝑀2 |

F.start() | F.fork() |

pure(F) | F.bind(𝑓) | F.catch(𝑓) |

F.put(𝑀) | 𝑚.put(F) | F.take() |

F.cancel() | F.pause() | F.resume()

The terms include expressions like new MVar, function call,
and branch, whose transitions are non-blocking. That is, a
live thread will continue to be alive after the transition. Rule
(Start) describes how 𝐴.start() starts a new thread with a
root progress as its thread ID. The new thread is also in the
ready state so that the calling thread can continue to run.

Run and Termination. By Rule (Run), a thread in ready
state can transition to a live thread; and by Rule (Par) in Fig-
ure 5, this transition is allowed if there is no other live threads.
This semantics is implemented by running the thread with a
0 second timeout so that a ready thread is scheduled to run
by the JavaScript event loop after other threads complete
or become stuck. Figure 7 also includes the rules for thread
termination, which states that a forked or started thread
terminates if it returns a value or throws an error while the
main thread terminates when it reduces to a value. Rule (GC)
says that a terminated thread is removed from the program.

Thread Actions. Figure 8 defines the transition rules for
terms that cancel, pause, and resume threads. Rule (Cancel)
states that the term 𝑡 .cancel() reduces an undefined value
while producing actions to cancel threads with ID 𝑡𝑖 that
satisfies the relation prefix(𝑡, 𝑡𝑖). The actions are denoted
by the set {J𝑡𝑖 cancelK}prefix(𝑡,𝑡𝑖) . The relation prefix(𝑡, 𝑡𝑖) is
defined below, which means that 𝑡 either equals 𝑡𝑖 or is an
ancestor of 𝑡𝑖 .

prefix(𝑡, 𝑡) prefix(𝑡,𝑢)
prefix(𝑡,𝑢 · 𝑝)

In other words, 𝑡 .cancel() will cancel any threads running
with 𝑡 or the children of 𝑡 as thread IDs. By Rule (Cancel-
Stuck), the cancel action will cause a stuck thread to throw
an exception. This rule takes precedence over Rule (Async)
so that a stuck thread, if cancelled, will always terminate. By
Rule (Cancel-Async), the cancel actionwill cause a live thread
with an asynchronous operation to throw an exception. The
rule is applicable when a thread is cancelling itself.

Rule (Pause) describes how 𝑡 .pause() reduces to the undef
value in its context and produces a set of the pause actions
{J𝑡/𝑡𝑖 pauseK}prefix(𝑡,𝑡𝑖) . By Rule (Pause-Stuck), each of the
pause actions can pause a stuck thread when it unblocks,
which transitions to another stuck thread LE[pure(𝑐)]M•,𝑡𝑡𝑖 .
The superscript 𝑡 indicates that this thread can only be re-
sumed by the call 𝑡 .resume() according to the rules (Resume)
and (Resume-Paused).

5 Additional Constructs
Race and All. We provide a race combinator to conduct

a race among a list of threads and an all combinator to run
a list of threads concurrently and to wait for their results.
The composed threads can be cancelled altogether without
any additional logic due to our cancellation mechanism.
If we race a list of threads, the losing threads will also

be cancelled. The race method below first allocates a child

A Concurrency Model for JavaScript with Cooperative Cancellation SLE ’21, October 17–18, 2021, Chicago, IL, USA

LE[pure(𝑉).bind(𝑓)]M𝑡 −→ LE[𝑓 (𝑉)]M𝑡 (Bind)

LE[pure(𝑉).catch(𝑓)]M𝑡 −→ LE[pure(𝑉)]M𝑡 (Propagate-Value)

LE[throw(𝑐).catch(𝑓)]M𝑡 −→ LE[𝑓 (𝑐)]M𝑡 (Catch)

LE[throw(𝑐).bind(𝑓)]M𝑡 −→ LE[throw(𝑐)]M𝑡 (Propagate-Error)

LE[𝐴.fork()]M𝑡 −→ a𝑝.(L𝐴M◦𝑡 ·𝑝 | LE[pure(𝑡 · 𝑝)]M𝑡), 𝑝 ∉ 𝑓 𝑛(E, 𝐴) (Fork)

LE[lift(𝑓)]M𝑡 −→ LE[lift(𝑓)]M•𝑡 (Stuck-Async)

LE[lift(𝑓)]M•𝑡
?𝑐−→ LE[pure(𝑐)]M𝑡 (Async)

⟨⟩𝑚 | LE[𝑚.put(𝑉)]M𝑏𝑡 −→ ⟨𝑉 ⟩𝑚 | LE[pure(undef)]M𝑡 (Put-MVar)

⟨𝑉 ⟩𝑚 | LE[𝑚.take()]M𝑏𝑡 −→ ⟨⟩𝑚 | LE[pure(𝑉)]M𝑡 (Take-MVar)

⟨𝑉 ′⟩𝑚 | LE[𝑚.put(𝑉)]M𝑡 −→ ⟨𝑉 ′⟩𝑚 | LE[𝑚.put(𝑉)]M•𝑡 (Stuck-Put-MVar)

⟨⟩𝑚 | LE[𝑚.take()]M𝑡 −→ ⟨⟩𝑚 | LE[𝑚.take()]M•𝑡 (Stuck-Take-MVar)

Figure 6. Transition rules for AsyncM values

LF[𝐴.start()]M𝑢 −→ a𝑝.(L𝐴M◦𝑝 | LF[𝑝]M𝑢), 𝑝 ∉ 𝑓 𝑛(F, 𝐴) (Start)

LF[new𝑀𝑉𝑎𝑟]M𝑢 −→ a𝑚.(⟨⟩𝑚 | LF[𝑚]M𝑢), 𝑚 ∉ 𝑓 𝑛(F) (New-MVar)

LF[(𝑥 => 𝑀) (𝑉)]M𝑢, −→ LF[𝑀 [𝑉 /𝑥]]M𝑢 (Call)

LF[𝑡𝑟𝑢𝑒 ?𝑀1 : 𝑀2]M𝑢, −→ LF[𝑀1]M𝑢 (True)

LF[𝑓 𝑎𝑙𝑠𝑒 ?𝑀1 : 𝑀2]M𝑢, −→ LF[𝑀2]M𝑢 (False)

L𝐴M◦𝑡 −→ L𝐴M𝑡 (Run)

Lpure(𝑉)M𝑡 −→ LM𝑡 (Value-End)

Lthrow(𝑐)M𝑡 −→ LM𝑡 (Error-End)

L𝑉 M𝜖 −→ LM𝜖 (Main-End)

LM𝑢 | 𝑃 −→ 𝑃 (GC)

Figure 7. Transition rules for terms, run thread, and termination

LF[𝑡 .cancel()]M𝑢 −→ LF[undef]M𝑢 | {J𝑡𝑖 cancelK}prefix(𝑡,𝑡𝑖) (Cancel)

LF[𝑡 .pause()]M𝑢 −→ LF[undef]M𝑢 | {J𝑡/𝑡𝑖 pauseK}prefix(𝑡,𝑡𝑖) (Pause)

LF[𝑡 .resume()]M𝑢 −→ LF[undef]M𝑢 | {J𝑡/𝑡𝑖 resumeK}prefix(𝑡,𝑡𝑖) (Resume)

J𝑡 cancelK | LE[𝑉]M•𝑡 −→ LE[throw(“𝑖𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡𝑒𝑑”)]M𝑡 (Cancel-Stuck)

J𝑡 cancelK | LE[lift(𝑓)]M𝑡 −→ LE[throw(“𝑖𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡𝑒𝑑”)]M𝑡 (Cancel-Async)

J𝑡/𝑡𝑖 pauseK | LE[lift(𝑓)]M•𝑡𝑖
?𝑐−→ LE[pure(𝑐)]M•,𝑡𝑡𝑖 (Pause-Stuck)

J𝑡/𝑡𝑖 resumeK | LE[pure(𝑐)]M•,𝑡𝑡𝑖 −→ LE[pure(𝑐)]M𝑡𝑖 (Resume-Paused)

Figure 8. Transition rules for cancellation, pause, and resumption. Rule (Cancel-Stuck) has higher priority than Rule (Async).

SLE ’21, October 17–18, 2021, Chicago, IL, USA Tian Zhao and Yonglun Li

Progress 𝑝1 and then runs the component threads with 𝑝1.
When one of the threads wins the race, the call 𝑝1.cancel()
terminates the rest of the threads.

// race :: [AsyncM a] -> AsyncM a

static race = lst => new AsyncM (p => {

let p1 = new Progress(p);

return Promise.race(lst.map(a => a.run(p1)))

.finally(_ => {

p1.cancel (); // cancel losing threads

p1.unlink (); // remove p to p1 link

});

})

// race :: [AsyncM a] -> AsyncM [a]

static all = lst => new AsyncM (p =>

Promise.all(lst.map(a => a.run(p)))

)

Channel. We can use MVar to implement other primitives.
For example, we have implemented a buffered channel using
a MVar to hold the pending readers when the channel is
empty and to hold the pending writers when the channel
is full. Any threads that are blocked on a channel can be
cancelled because they are blocked on its MVar.

Safe points. All asynchronous operations defined with
lift are potential points of cancellation. An alternative is
to run these operations using Promises instead and to poll
the cancellation status at specific check points. The ifAlive
method below can be composed with other AsyncMs as a safe
point for cancellation.

static ifAlive = new AsyncM (async p => {

if (! p.cancelled) return;

else throw("interrupted");

});

Control flow. Implementing control flow with AsyncM
is more awkward than using async/await. For simple cases
such as infinite loops, we can use methods like loop below.

// e.g. a.loop() runs forever unless cancelled

class AsyncM {

loop = _ => new AsyncM (async p => {

while (true) { await this.run(p) }

})

}

For more complex control flow, it is better to compose the
AsyncMs indirectly by first converting them to Promises,
which can be composedwith await. The composed Promises
can then be converted back to an AsyncM object using an
async function with a Progress parameter.

6 Evaluation
Our model is implemented with 400 lines of JavaScript. To

evaluate its usability, we used it in two applications.

Data streaming. The first application (Figure 9) streams
the voltage and current signals (sampled at 1KHz) from a re-
mote source and visualizes them in two real-time charts. The
voltage and current charts can be paused/resumed separately
and can be stopped simultaneously.
To hide network latency, this application uses a thread

(Thread A in Figure 10) to fetch data in batches at a regular
interval and to push each data request to the request channel.
Thread B reads a data request from the request channel, waits
for it to complete, and writes its result to the voltage chan-
nel and the current channel using the AsyncM.all method.
Thread V retrieves a batch of data from the voltage channel
and displays the voltage data incrementally in a chart (e.g.
by updating the chart with 10 new samples every 10 ms).
Thread C performs similar actions for the current data.

All 4 threads run independently and communicate through
the channels, which allows the speeds of data transmission
and chart rendering to match. For example, if data transmis-
sion is faster than chart rendering, one or both of the data
channels will become full, causing Thread B to block and
the request channel to become full, which blocks Thread
A. Also, we can pause the voltage (or the current) chart by
pausing Thread V (or Thread C). Note that if Thread V is
paused, the voltage channel will become full if Thread B
keeps writing to it, which eventually blocks Thread B from
writing to the current channel even if it is not full. Thus, if a
chart is paused, Thread B may be cancelled and restarted so
that it only writes data to the channel of the running chart.

Our thread abstractions help reduce the complexity of this
application, where the channels manage thread synchroniza-
tion, hierarchical thread cancellation allows all threads be
cancelled as a group, and the ability to pause and resume
threads makes it easy to pause and resume chart animations.

RxJS. The second application3 is a subset of RxJS inter-
face implemented with our thread library. RxJS4 is a popular
JavaScript library for reactive programming, which repre-
sents event streams as dataflow graphs. The core abstraction
of RxJS is the Observable interface, which emits events to
its observers connected through the Subscription objects.
Despite its popularity, RxJS is difficult to debug [1] since, un-
like the functional designs of reactive programming [6, 24],
RxJS is imperative and its control flow does not correspond
to its dataflow, which is hard to inspect with debuggers.
In our design, each Observable is implemented with a

function that takes an emitter object and returns a thread
that emits events to the emitter. As shown in Figure 11, when
an Observable is subscribed, two threads are started: one
is the Observable thread that emits events to an emitter,
while the other thread calls a continuation 𝑘 with the events
received from the emitter. When the Subscription is un-
subscribed, both threads are cancelled through a shared

3https://github.com/tianzhao/rxjs
4http://reactivex.io

https://github.com/tianzhao/rxjs
http://reactivex.io

A Concurrency Model for JavaScript with Cooperative Cancellation SLE ’21, October 17–18, 2021, Chicago, IL, USA

Figure 9. A data streaming application, where 𝑉𝑎 , 𝑉𝑏 , 𝑉𝑐 , 𝑉𝑑𝑐 , 𝑉𝑟𝑚𝑠 are voltages and 𝐼𝑎 , 𝐼𝑏 , 𝐼𝑐 , 𝐼𝑑𝑐 , 𝐼𝑟𝑚𝑠 are currents.

Figure 10.The architecture of the data streaming application
in Figure 9, where A, B, C, and V are threads.

Figure 11. The subscription of a RxJS Observable using 2
threads (arrow circles) and an emitter (middle circle).

thread ID. Within an Observable, if an inner Observable is
subscribed, its thread is the child of the parent Observable’s
thread. Therefore, when an Observable is unsubscribed, its
inner Observables are unsubscribed automatically due to
the hierarchical cancellation of our thread model.
Our version of RxJS is easier to debug since the dataflow

graph of a RxJS expression is embedded in the returned
Subscription object, which contains an emitter, a thread
ID, and the references to the Subscriptions to the inner
Observables. Users can debug a RxJS program by navigating
the Subscription object to examine the dataflow graph,
inspecting its emitter for the past events, and checking its
thread ID for the status of the subscription threads.

Runtime overhead. Themost significant overhead in our
design is due to the AsyncM.lift method, which allocates
continuations and adds/removes cancellers. The table below
shows in milliseconds the amount of time it takes to run
a trivial synchronous and asynchronous computation (0s

timeout) over a number of iterations. For synchronous com-
putation, the overhead of lift is significant compared to
Promise-based implementation. However, for asynchronous
computation, the overhead due to lift is less noticeable.

iterations Synchronous Asynchronous
AsyncM Promise AsyncM Promise

100 1.12 0.16 158.38 147.61
500 5.16 0.33 753.66 721.82
1000 5.42 0.55 1479.62 1458.18
5000 11.76 2.47 7314.38 7292.97
10000 17.99 4.92 14628.99 14590.47

7 Related Work
Promises. This work enhances JavaScript’s Promises [5]

by providing a thread-like concurrency model with coop-
erative cancellation. While Promises (together with async
and await) allow us to write asynchronous programs in
JavaScript in sequential style, the execution order of the pro-
grams is not always clear. JavaScript’s event loop maintains
separate queues for tasks (e.g. timeouts) and micro-tasks (e.g.
Promises). Promises are executed in the order in which they
are added to the micro-task queue. For example, the execu-
tion of two Promise chains can interleave even if they are
all synchronous. Even if we call an async function without
awaiting for its result, its synchronous portion still runs
first. Also, the resolve and reject functions of a Promise
can be saved and invoked later by some other code, which
can cause further interleaving of Promise execution. Conse-
quently, a Promise chain may not have exclusive access to
shared states in between asynchronous operations, which
can lead to subtle race conditions. By wrapping Promises
inside AsyncMs, we ensure that the threads must be explicitly
started, the synchronous part of a thread has exclusive access
to the shared states, and the locks such as MVars can be used
to protect shared states between threads.

Promises also do not have builtinmethods for cancellation
but hand-crafted solution can easily forget pending callbacks
or Promises, which leads to unintended side effects. Our
proposal is intended to complement Promises by providing
a more consistent way to terminate unused computation.

SLE ’21, October 17–18, 2021, Chicago, IL, USA Tian Zhao and Yonglun Li

Coroutine. The exact definition for coroutines varies be-
tween languages, but they are generally understood as non-
preemptive thread-like concepts [7, 12, 22]. They are non-
preemptive in the way that control of execution can be sus-
pended and transferred explicitly. A JavaScript generator is a
limited form of coroutine that allows computation to switch
back and forth between a generator and its caller through
the yield mechanism. Together with Promises, generators
can be used to compose asynchronous computation using
for..of or for await..of loops. Python’s asyncio library is
an asynchronous framework that supports non-preemptive
scheduling and also cancellation [9]. It provides low-level
API that allows scheduling work from a different OS thread,
in which case thread-safety needs to be considered.

Concurrency monad. Claessen [4] described the use of
continuation monad for concurrency in Haskell. The design
permits a limited form of concurrency on monadic compu-
tations without adding primitives to the language. The con-
currency monad builds on the continuation monad, where
computations can be evaluated concurrently by interleav-
ing evaluation of lifted operations. By implementing it as a
monadic transformer, the existing monads can be extended
with concurrency operations and can be entirely defined
as a library without introducing new language primitives.
This idea was later adopted by Li and Zidancwic [13] in their
scalable network services that provide type-safe abstractions
for both events and threads. They use a continuation monad
to build traces that are scheduled by the event loops.

Asynchronous Exception. Asynchronous exception is
introduced in Concurrent Haskell [16], which allows one
thread to throw an asynchronous exception to another thread.
The asynchronous exception raises a synchronous exception
in the receiving thread, which can be handled or cause the
thread to terminate. Since Concurrent Haskell has preemp-
tive scheduling, the asynchronous exception can interrupt
the receiving thread at any point. To protect critical regions,
Concurrent Haskell includes block and unblock primitives
to mask the regions that cannot be interrupted. Despite this,
threads blocked on MVar or IO can always be interrupted to
reduce the chance of deadlock.
We adopt a similar strategy by throwing interrupt ex-

ception to target threads. However, since JavaScript is not
preemptive, the interrupt exceptions are only received at the
locations where the threads are blocked or polling the thread
status. To disable the interrupt exceptions, we can run an
AsyncM with a new Progress using the block method below.

class AsyncM {

block = _ =>

new AsyncM(_ => this.run(new Progress ())) }

Our operational semantics is also modeled after that of Con-
current Haskell [16], where the reduction of processes is
based on the chemical abstract machine [2, 3].

Cooperative Cancellation. AC [10] introduced language
constructs to insert code blocks for asynchronous IO in na-
tive languages like C/C++. Each of these blocks is delimited
by the do..finish keywords. Within a block, the keywords
async and cancel can be used to start an asynchronous op-
eration and to cancel it, respectively. The cancel keyword
can be used with a label to indicate which async operation to
cancel, but it must be used within the enclosing do..finish
block. Cancelling an async operation will propagate can-
cellation into any nested async branches recursively. The
execution of a do..finish block does not complete until all
async operations within it are finished or cancelled.
.NET uses cancellation tokens for cooperative cancella-

tion, where the concurrent tasks use their cancellation tokens
to decide how to handle cancellation requests. The design
distinguishes the cancellation source, which is used for re-
questing cancellation, from the tokens, which are used for
polling cancellation status, registering cancellation callbacks,
and enabling blocked tasks to wait for cancel events. A task
can react to multiple cancellation tokens by linking them in
a new cancellation source. F# [18, 23] provides an asynchro-
nous programming model through CPS transformation on
its async expressions. The language supports cancellation
by implicitly threading cancellation tokens (derived from a
cancellation source) through the program execution. Can-
cellation tokens are checked at IO primitives and various
control flow constructs.

Our cancellation mechanism is similar to the cancellation
tokens in that a thread reacts to the cancellation requests at
some program points. However, we integrate cancellation
into a thread model, where a thread ID is both the cancella-
tion source and token. The hierarchical structure of threads
allows a child thread to react to a cancellation request to its
parent thread without explicitly linking cancellation tokens.

8 Conclusion
We have presented a thread-based concurrency model for

JavaScript that can cancel, pause, and resume threads. The
thread abstraction makes it easier to reason about asynchro-
nous programs while synchronization primitives can protect
shared resources. These advantages help reduce the occur-
rences of race conditions. The ability to cancel threads helps
prevent the side effects of unwanted computation. The abil-
ity to pause and resume threads may be used for debugging
concurrency errors in a browser environment and providing
a simple way to suspend computation such as animation.
This design is implemented as a JavaScript library and

since each AsyncM wraps a Promise function, it is compati-
ble with the Promise abstraction and can be integrated with
other types of programs using async and await to imple-
ment complex logic. The overhead of thread abstractions and
cancellation is not significant relative to the computation
time of the asynchronous operations that they support.

A Concurrency Model for JavaScript with Cooperative Cancellation SLE ’21, October 17–18, 2021, Chicago, IL, USA

References
[1] Manuel Alabor and Markus Stolze. 2020. Debugging of RxJS-Based

Applications. In Proceedings of the 7th ACM SIGPLAN International
Workshop on Reactive and Event-Based Languages and Systems (Virtual,
USA) (REBLS 2020). ACM, New York, NY, USA, 15–24. https://doi.org/
10.1145/3427763.3428313

[2] Gérard Berry and Gérard Boudol. 1992. The Chemical Abstract
Machine. Theor. Comput. Sci. 96, 1 (April 1992), 217–248. https:
//doi.org/10.1016/0304-3975(92)90185-I

[3] Gérard Boudol. 1992. Asynchrony and the Pi-Calculus.
[4] Koen Claessen. 1999. A Poor Man’s Concurrency Monad. J.

Funct. Program. 9, 3 (May 1999), 313–323. https://doi.org/10.1017/
S0956796899003342

[5] ECMA International. 2015. ECMA-262: ECMAScript 2015 Language
Specification (6th ed.). Standard. ECMA International. http://www.
ecma-international.org/ecma-262/6.0/

[6] Conal Elliott. 2009. Push-pull functional reactive programming. In
Haskell Symposium. http://conal.net/papers/push-pull-frp

[7] Ralf S. Engelschall. 2006. The GNU Portable Threads. https://www.
gnu.org/software/pth/

[8] Amin Milani Fard and Ali Mesbah. 2017. JavaScript: The (Un)Covered
Parts. In 2017 IEEE International Conference on Software Testing, Ver-
ification and Validation, ICST 2017, Tokyo, Japan, March 13-17, 2017.
230–240. https://doi.org/10.1109/ICST.2017.28

[9] Python Software Foundation. [n.d.]. The Python Language Reference.
https://docs.python.org/3/reference/expressions.html

[10] Tim Harris, Martin Abadi, Rebecca Isaacs, and Ross McIlroy. 2011. AC:
Composable Asynchronous IO for Native Languages. SIGPLAN Not.
46, 10 (Oct. 2011), 903920. https://doi.org/10.1145/2076021.2048134

[11] Shin Hong, Yongbae Park, and Moonzoo Kim. 2014. Detecting Con-
currency Errors in Client-Side JavaScript Web Applications. In 2014
IEEE Seventh International Conference on Software Testing, Verification
and Validation. IEEE, 61–70. https://doi.org/10.1109/ICST.2014.17

[12] D.E. Knuth. 2005. The Art of Computer Programming, Volume 1, Fascicle
1: MMIX –A RISC Computer for the NewMillennium. Pearson Education.
https://books.google.com/books?id=imjwBQAAQBAJ

[13] Peng Li and Steve Zdancewic. 2007. Combining Events and Threads for
Scalable Network Services Implementation and Evaluation of Monadic,
Application-Level Concurrency Primitives. SIGPLAN Not. 42, 6 (June
2007), 189–199. https://doi.org/10.1145/1273442.1250756

[14] Matthew C. Loring, Mark Marron, and Daan Leijen. 2017. Semantics
of Asynchronous JavaScript. In Proceedings of the 13th ACM SIGPLAN
International Symposium on on Dynamic Languages (Vancouver, BC,
Canada) (DLS 2017). ACM, New York, NY, USA, 51–62. https://doi.
org/10.1145/3133841.3133846

[15] Magnus Madsen, Ondřej Lhoták, and Frank Tip. 2017. A Model for
Reasoning About JavaScript Promises. In Proceedings of the 2015 ACM
SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA’17). ACM. https://doi.
org/10.1145/3133910

[16] Simon Marlow, Simon Peyton Jones, Andrew Moran, and John Reppy.
2001. Asynchronous Exceptions in Haskell. SIGPLAN Not. 36, 5 (May
2001), 274–285. https://doi.org/10.1145/381694.378858

[17] Erdal Mutlu, Serdar Tasiran, and Benjamin Livshits. 2015. Detecting
JavaScript Races that Matter. In Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering. ACM, 381–392. https:
//doi.org/10.1145/2786805.2786820

[18] Tomas Petricek and Don Syme. 2014. The F# Computation Expression
Zoo. In Proceedings of the 16th International Symposium on Practical
Aspects of Declarative Languages - Volume 8324 (San Diego, CA, USA)
(PADL 2014). Springer-Verlag, Berlin, Heidelberg, 33–48. https://doi.
org/10.1007/978-3-319-04132-2_3

[19] Boris Petrov, Martin Vechev, Manu Sridharan, and Julian Dolby. 2012.
Race Detection for Web Applications. In Proceedings of the 33rd ACM
SIGPLAN Conference on Programming Language Design and Implemen-
tation (Beijing, China) (PLDI ’12). ACM, New York, NY, USA, 251–262.
https://doi.org/10.1145/2254064.2254095

[20] Simon Peyton Jones, Andrew Gordon, and Sigbjorn Finne. 1996. Con-
current Haskell. In Proceedings of the 23rd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (St. Petersburg
Beach, Florida, USA) (POPL ’96). ACM, New York, NY, USA, 295–308.
https://doi.org/10.1145/237721.237794

[21] Veselin Raychev, Martin Vechev, and Manu Sridharan. 2013. Effec-
tive Race Detection for Event-driven Programs. In Proceedings of
the 2013 ACM SIGPLAN International Conference on Object Oriented
Programming Systems Languages & Applications (Indianapolis,
Indiana, USA) (OOPSLA ’13). ACM, New York, NY, USA, 151–166.
https://doi.org/10.1145/2509136.2509538

[22] Lukas Stadler, Thomas Würthinger, and Christian Wimmer. 2010. Ef-
ficient Coroutines for the Java Platform. In Proceedings of the 8th
International Conference on the Principles and Practice of Programming
in Java (Vienna, Austria) (PPPJ ’10). ACM, New York, NY, USA, 20–28.
https://doi.org/10.1145/1852761.1852765

[23] Don Syme, Tomas Petricek, and Dmitry Lomov. 2011. The F# Asyn-
chronous Programming Model. In Practical Aspects of Declarative Lan-
guages, Ricardo Rocha and John Launchbury (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 175–189.

[24] Tian Zhao, Adam Berger, and Yonglun Li. 2020. Asynchronous Monad
for Reactive IoT Programming. In Proceedings of the 7th ACM SIGPLAN
International Workshop on Reactive and Event-Based Languages and
Systems (Virtual, USA) (REBLS 2020). ACM, New York, NY, USA, 25–37.
https://doi.org/10.1145/3427763.3428314

https://doi.org/10.1145/3427763.3428313
https://doi.org/10.1145/3427763.3428313
https://doi.org/10.1016/0304-3975(92)90185-I
https://doi.org/10.1016/0304-3975(92)90185-I
https://doi.org/10.1017/S0956796899003342
https://doi.org/10.1017/S0956796899003342
http://www.ecma-international.org/ecma-262/6.0/
http://www.ecma-international.org/ecma-262/6.0/
http://conal.net/papers/push-pull-frp
https://www.gnu.org/software/pth/
https://www.gnu.org/software/pth/
https://doi.org/10.1109/ICST.2017.28
https://docs.python.org/3/reference/expressions.html
https://doi.org/10.1145/2076021.2048134
https://doi.org/10.1109/ICST.2014.17
https://books.google.com/books?id=imjwBQAAQBAJ
https://doi.org/10.1145/1273442.1250756
https://doi.org/10.1145/3133841.3133846
https://doi.org/10.1145/3133841.3133846
https://doi.org/10.1145/3133910
https://doi.org/10.1145/3133910
https://doi.org/10.1145/381694.378858
https://doi.org/10.1145/2786805.2786820
https://doi.org/10.1145/2786805.2786820
https://doi.org/10.1007/978-3-319-04132-2_3
https://doi.org/10.1007/978-3-319-04132-2_3
https://doi.org/10.1145/2254064.2254095
https://doi.org/10.1145/237721.237794
https://doi.org/10.1145/2509136.2509538
https://doi.org/10.1145/1852761.1852765
https://doi.org/10.1145/3427763.3428314

	Abstract
	1 Introduction
	2 Thread-like Concurrency
	3 Concurrency with Cancellation
	3.1 Thread ID and Cancellation
	3.2 Asynchronous Exception
	3.3 Fork and Hierarchical Cancellation
	3.4 Pause and Resume Threads
	3.5 Synchronization Mechanism

	4 Operational Semantics
	4.1 Program Transitions
	4.2 Transition Rules

	5 Additional Constructs
	6 Evaluation
	7 Related Work
	8 Conclusion
	References

