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Abstract
RxJS is a popular JavaScript library for reactive program-

ming in Web applications. It provides numerous operators
to create, combine, transform, and filter discrete events and
to handle errors. These operators may be stateful and have
side effects, which makes it difficult to understand the pre-
cise meaning of the resulting computation. In this paper,
we define a formal model for RxJS programs by formalizing
a selected subset of RxJS operators using a small-step op-
erational semantics. We present several debugging related
applications using the semantics as a model. We also im-
plemented a subset of RxJS based on this semantics, which
provides convenient access to the runtime representation of
the RxJS program to help debugging.

CCS Concepts: • Computing methodologies → Concur-
rent computing methodologies; • Software and its en-
gineering → Concurrent programming structures.
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1 Introduction
RxJS is a reactive programming library for JavaScript,

which has been integrated in frameworks such as Angular
and React to handle UI and other asynchronous events. De-
spite its success, debugging of RxJS programs is still difficult.
A recent study [1] examined the challenges in debugging
RxJS programs due to the disparity between the declara-
tive interface for defining dataflow logic [2] and the impera-
tive implementation based on the Observer Pattern [13]. As
pointed out in [1], traditional debugger does not offer much
help in identifying the cause of the bugs since the dataflow
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logic of RxJS programs is not directly reflected in the con-
trol flow logic represented by the call stacks at the break
points. A RxJS program constructs and mutates dataflow
graphs and pushes events through the graphs to perform
pure computation and to produce side effects. The dataflow
graphs are implicit constructs that are not readily accessible
to users during the debugging phase. To find the cause of
an error, one needs to examine the states of the dataflow
graphs, which include the graph shapes and the events at
each graph node. Programmers often resort to indirect ap-
proaches such as printing event traces and drawing dataflow
graphs by instrumenting the source program or using de-
bugging tools such as rxjs-spy, rxviz, and rxjs-playground.
While these methods are useful, they are informal, require
manual inspection, and does not scale to larger programs.

In this paper, we present a formal semantics for a selected
subset of RxJS operators to provide a precise definition of
their meaning. Using the semantics as a model, we can define
some debugging related applications to help discover prob-
lems in RxJS programs. The semantics models RxJS runtime
with a heap that contains the subscription graph, where each
node is a subscription, and a queue that contains the exter-
nal and internal events. The reduction of a RxJS program
alternates between graph construction phase and reactive
phase where events are propagated through the graph. Using
the semantics as a model, we can define a representation
of stack trace specific to the RxJS programs, a set of rules
to check subscription states, and a runtime invariant of the
subscription graph to ensure that the error for each event
source can be uniquely identified.
Based on this semantics, we have implemented a large

subset of RxJS using a thread-like abstraction using concur-
rency monad [27, 28], where each thread can be cancelled
via its thread ID. We use this thread abstraction to imple-
ment the subscription to an observable so that unsubscribe
operation is the same as thread cancellation. When an ob-
servable is subscribed, it returns a subscription that holds an
emitter, a thread ID, and the subscriptions to the source and
child observables if any. Through the subscription object,
users can cancel the subscription or use it to navigate the
dataflow graphs, check the state of each node, and examine
the previous events.

In this paper, we make the following contributions:

1. We give a motivational example in Section 2 to demon-
strate how semantics can help identify problems in a
RxJS program.

1

https://doi.org/10.1145/3563837.3568340
https://doi.org/10.1145/3563837.3568340
https://doi.org/10.1145/3563837.3568340


REBLS ’22, December 07, 2022, Auckland, New Zealand Tian Zhao and Yonglun Li

2. In Section 3, we present a formal model of RxJS by
defining an operational semantics for a selected sub-
set of RxJS operators. The semantics provides a sim-
plified model for reasoning about the expected and
unexpected behavior of a RxJS program.

3. In Section 4, we provide some example applications of
the semantics for debugging purposes, which include
stack-trace suitable for reactive programs, unexpected
states of observables, and checking invariant on sub-
scription graph,

4. We describe an implementation of RxJS library that
conforms to this semantics in Section 5.

5. The related works are discussed in Section 6.

2 Subscription as Dataflow Graph
In this section, we use the following example to motivate

the need of a formal semantics for RxJS. This example is a
simple type-ahead client, which sends a query request each
time the user types a character in a text box. If a previous
query does not complete before a new request, then old query
is canceled. If a query is answered on time, then the result is
displayed.
let subscription =

fromEvent('#type -ahead', 'keyup ') // input

.map(e => e.target.value) // input text

.switchMap(x => from(query(x))) // query

.subscribe(display); // display results

Figure 1. The subscription graph of the type-ahead example.

The structure of the subscription graph is shown in Fig-
ure 1, where the arrows point to the source or child of each
subscription. The subscription graph mirrors the dataflow,
from which we can also examine the past events emitted by
each observable. There are three types of events emitted by
an observable.

1. next(v), which holds event value 𝑣 ;
2. end, which indicates that the observable completes;
3. error, which signals an exception and it recursively

propagates to the subscribers until it is either caught
by a catchError observable or by the root subscriber.
Observable that throws an error is cancelled.

Using the subscription graph, users can find the source
of errors more easily. For example, the type-ahead server
returns an error for certain inputs. The user wants to catch
the error by inserting a catchError operator so that the
error does not stop the client.

let subscription =

fromEvent('#type -ahead', 'keyup ')

.map(e => e.target.value)

.switchMap(x => from(query(x)))

.catchError(_ => of('error ')) // A bug

.subscribe(display);

The code above shows the initial attempt of catching error
but it fails to keep the type-ahead client running – it still
terminates if an error is emitted. The cause of the problem
is that the catchError protects the switchMap, and when
it catches an error, it must terminate the entire switchMap
instead of the from observable.

Figure 2. The initial attempt to catch query errors.

This relation is illustrated in Figure 2. Note that while it is
possible to spot this problem by inspecting the source code, it
is much harder to identify similar problems in larger applica-
tions. A systematic solution should allow automatic analysis
of the subscription graph to detect similar problems. For ex-
ample, we can require that every source observable such as
fromEvent or from be uniquely protected by a catchError
or a root subscriber. In Figure 2, both the fromEvent and
from are guarded by the same catchError, which may indi-
cate a potential problem.

We can fix the bug by placing the catchError within the
switchMap operator as shown below.
let subscription =

fromEvent('#type -ahead', 'keyup ')

.map(e => e.target.value)

.switchMap(x =>

from(query(x))

.catchError(_ => of('error '))

) // catch error and emit a string event

.subscribe(display);

The resulting subscription graph is shown in Figure 3, where
fromEvent is protected by the root subscriber while from is
protected by catchError.

Figure 3. The correct handling of query errors.

While the subscription graph is static in this example, in
general, a subscription graph may change at runtime. This
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means that the checking of the subscription graph should
be done at runtime when the graph is updated. However, to
avoid unnecessary overhead, the runtime checking should
be limited to graph updates that may cause a violation of the
invariant. To understand how to check this invariant, in the
next section, we present a formal semantics to a selected set
of RxJS operators.

3 Operational Semantics
In this section, we define a formal model of RxJS compu-

tation using a selected subset of RxJS operators, which we
call 𝜆𝑟𝑥 . We define an operational semantics that includes
the rules for subscribe and unsubscribe operations and the
rules for reacting to external or internal events.

3.1 Syntax
The syntax of 𝜆𝑟𝑥 is shown in Figure 4, where 𝑒 ranges

over expressions such as variables, observables, subscribe
operations 𝑒.sub(𝑓 ), unsubscribe operations 𝑒.unsub(), as-
signments, sequences, functions, and calls. The subscribe
operation 𝑒.sub(𝑓 ) starts an observable 𝑒 and calls a func-
tion 𝑓 with the observable events as inputs. The unsubscribe
operation stops the subscription to an observable. Note that
𝑜.sub() is a runtime value that denotes the subscription to
the observable 𝑜 and it evaluates to a reference 𝑟 to the sub-
scription. The assignment expression 𝑥 = 𝑜.share() is used
to share the observable 𝑜 through the variable 𝑥 .

The variable 𝑜 ranges over 𝑥 (for shared observables) and
observable expressions, which include one or two operators
from each group of RxJS operators detailed as follows.

• fromEvent(𝑒𝑙𝑚, 𝑒𝑣𝑡) is a creation operator that creates
a primitive observable that emits events of type 𝑒𝑣𝑡
from a DOM element 𝑒𝑙𝑚.

• combine(𝑜1, 𝑜2) (the same as combineLatest in RxJS)
and concat(𝑜1, 𝑜2) are combination operators that com-
bine the latest events from 𝑜1 and 𝑜2 and concatenate
the event streams of 𝑜1 and 𝑜2.

• 𝑜.every(𝑓 ) is a condition operator that emits true if
all events from 𝑜 satisfy the predicate 𝑓 and emits false
otherwise.

• 𝑜.catchError(𝑓 ) is an error handling operator that
emits next events from 𝑜 but if 𝑜 emits an error, then
it stops 𝑜 and emits events from 𝑓 () instead.

• 𝑜.share() is a multicasting operator that shares the
events of 𝑜 with multiple subscribers and manages
the lifetime of 𝑜 using reference counting. When the
shared observable is first subscribed, it is transformed
to share(𝑜, 𝑟 ), where 𝑟 points to a subscription of 𝑜 .

• 𝑜.take(𝑛) is a filtering operator that takes up to 𝑛

events from 𝑜 .
• 𝑜.map(𝑓 ) is a transformation operator that for each
event value 𝑣 of 𝑜 , it emits 𝑓 (𝑣).

𝑒 ∈ Expression ::= 𝑥

| 𝑜

| 𝑒.sub(𝑓 )
| 𝑒.unsub()
| 𝑜.sub()
| 𝑥 = 𝑜.share()
| 𝑒; 𝑒′
| 𝑥 ⇒ 𝑒

| 𝑒 (𝑒′)
| . . .

𝑜 ∈ Observable ::= 𝑥

| fromEvent(𝑒𝑙𝑚, 𝑒𝑣𝑡)
| combine(𝑜1, 𝑜2)
| concat(𝑜1, 𝑜2)
| 𝑜.every(𝑓 )
| 𝑜.catchError(𝑓 )
| 𝑜.take(𝑛)
| 𝑜.map(𝑓 )
| 𝑜.switchMap(𝑓 )

Figure 4. The syntax of 𝜆𝑟𝑥 , where the shaded terms are
runtime entities.

• 𝑜.switchMap(𝑓 ) is also a transformation operator that
for each event value 𝑣 of 𝑜 , it emits the events of the
new inner observable 𝑓 (𝑣) after it stops the existing
inner observable if any.

3.2 Runtime Values
A subscribe operation 𝑜.sub() evaluates to a subscription,

which is a runtime value shown in Figure 5. Each observable
operator has a corresponding subscription value, which may
carry additional state information of the subscription. We
store the subscriptions in a heap 𝐻 that maps references
(denoted by 𝑟 ) to subscriptions. Each subscription can refer
to its source subscriptions through the references, which is
detailed as follows.

• combine(𝑟1, 𝑟2, 𝑣1, 𝑣2, 𝑛) contains 𝑟1 and 𝑟2, which are
the subscriptions to the source observables. It also
contains 𝑣1 and 𝑣2, which are either the last events or
undefined (denoted by 𝜖). 𝑛 is the number of source
observables that have completed.

• concat(𝑟1, 𝑜2) contains the subscription 𝑟1 and an ob-
servable expression 𝑜2 that starts once 𝑟1 completes.

• every(𝑟, 𝑓 ), catchError(𝑟, 𝑓 ), and map(𝑟, 𝑓 ) contain
the subscription 𝑟 to their source observable.

• sharing(𝑥) contains 𝑥 that references a shared observ-
able share(𝑜, 𝑟 ), where 𝑟 is a subscription to 𝑜 .

• take(𝑟, 𝑛) contains the subscription 𝑟 to its source
observable and the remaining number of events 𝑛.
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𝑠 ∈ Subscription ::= fromEvent(𝑒𝑙𝑚, 𝑒𝑣𝑡)
| combine(𝑟1, 𝑟2, 𝑣1, 𝑣2, 𝑛)
| concat(𝑟1, 𝑜2)
| every(𝑟, 𝑓 )
| catchError(𝑟, 𝑓 )
| sharing(𝑥)
| take(𝑟, 𝑛)
| map(𝑟, 𝑓 )
| switchMap(𝑟1, 𝑓 , 𝑟2, 𝑏)
| sub(𝑟, 𝑓 )

𝑣 ∈ Value ::= 𝑛 | 𝑜 | true | false | 𝜖 | 𝑥 ⇒ 𝑒

ℎ ∈ Shared ::= 𝑜.share()
observable | share(𝑜, 𝑟 )

𝐻 ∈ Heap ::= {𝑥 ↦→ ℎ; . . . ; 𝑟 ↦→ 𝑠; . . .}

𝑄 ∈ Queue ::= [(𝑡, 𝑟 ), . . .]

𝑡 ∈ Event :: next(𝑣)
| end
| error

Figure 5. The runtime values of 𝜆𝑟𝑥 , where 𝑥 points to shared
observables and 𝑟 points to the subscriptions in the heap.

• switchMap(𝑟1, 𝑓 , 𝑟2, 𝑏) contains the subscriptions to
the outer and inner observables 𝑟1, 𝑟2, and 𝑏, which is
a Boolean that indicates whether the inner or outer
observable has ended.

A queue 𝑄 is used to temporarily hold events that are
emitted from observables but have not yet been received by
the subscribers. 𝑄 holds a list of pairs (𝑡, 𝑟 ), where 𝑡 is an
event and 𝑟 refers to the subscription that emitted the event.
Each event is either a next(𝑣) event with value 𝑣 , an error,
or an end event that signals the completion of an observable.
The event queue can be used to model some variations of
event scheduling in RxJS.

3.3 Evaluation of Expressions
𝜆𝑟𝑥 includes variables, observables, assignments, func-

tions, calls, and subscribe and unsubscribe operations. The
evaluation rules for expressions are shown in Figure 7, where
each rule has the form of𝐻, 𝑒 → 𝐻 ′, 𝑒′. The expressions such
as assignment and unsubscribe operation are evaluated for
their side effects.

The expression 𝑜.sub(𝑓 ) is the starting point of RxJS com-
putation, where the observable 𝑜 is subscribed so that its
events are used to run 𝑓 for its side effects. By Rule 𝐸𝑠𝑢𝑏1,
the subscribe operation evaluates to a reference 𝑟 that points
to sub(𝑟 ′, 𝑓 ), which listens on the events of 𝑟 ′ to run 𝑓 and
𝑟 ′ references the subscription to 𝑜 . By Rule 𝐸𝑠𝑢𝑏2, 𝑜.sub()
reduces to a fresh reference that maps to the subscription

𝐸 ::= ·
| 𝐸.sub(𝑓 )
| 𝐸.unsub()
| 𝐸; 𝑒
| 𝐸 (𝑒)
| 𝑣 (𝐸)

Figure 6. The evaluation context for expressions

𝐻, 𝑣 → 𝐻, 𝑣 𝐸𝑉𝑎𝑙

𝑟 is fresh 𝐻,𝑜.sub() → 𝐻 ′, 𝑟 ′

𝐻,𝑜.sub(𝑓 ) → 𝐻 ′ [𝑟 ↦→ sub(𝑟 ′, 𝑓 )], 𝑟 𝐸𝑆𝑢𝑏1

𝑟 is fresh 𝐻,𝑜.sub() { 𝐻 ′, 𝑠

𝐻, 𝑜.sub() → 𝐻 ′ [𝑟 ↦→ 𝑠], 𝑟 𝐸𝑆𝑢𝑏2

𝐻, 𝑥 = 𝑜.share() → 𝐻 [𝑥 ↦→ 𝑜.share()], 𝜖 𝐸𝐴𝑠𝑠𝑖𝑔𝑛

𝐻, 𝑟 .unsub() { 𝐻 ′

𝐻, 𝑟 .unsub() → 𝐻 ′\{𝑟 ↦→ 𝐻 ′ (𝑟 )}, 𝜖 𝐸𝑈𝑛𝑠𝑢𝑏

𝐻, 𝑒 → 𝐻 ′, 𝑒′

𝐻, 𝐸 [𝑒] → 𝐻 ′, 𝐸 [𝑒′] 𝐸𝐶𝑜𝑛𝑔

𝐻, 𝑣 ; 𝑒 → 𝐻, 𝑒 𝐸𝑆𝑒𝑞

𝐻, (𝑥 ⇒ 𝑒) (𝑣) → 𝐻, [𝑣/𝑥]𝑒 𝐸𝐶𝑎𝑙𝑙

Figure 7. The evaluation rules for expressions

value 𝑠 evaluated from 𝑜.sub(). The evaluation of 𝑜.sub() to
a subscription value is defined by the rules in Figure 8.

Subscribe Operations. In 𝜆𝑟𝑥 , each subscribe operation
reduces to a reference 𝑟 that is mapped to a subscription
value 𝑠 in the heap. The subscribers to 𝑠 receives its events
through 𝑟 such that the subscriptions are linked as a graph
through references like 𝑟 .
A subscribe operation 𝑜.sub() may cause additional sub-

scriptions to the observables in 𝑜 . This behavior is detailed
in Figure 8. For example, in Rule 𝑆𝑐𝑜𝑚𝑏𝑖𝑛𝑒 , the subscription
to a ‘combine’ observable leads to the subscriptions to its
source observables 𝑜1 and 𝑜2.
Most of the RxJS operators create cold observables [20],

each of which has a single subscriber. The group of mul-
ticast operators such as share create hot observables that
can be shared by multiple subscribers. Rule 𝑆𝑆ℎ𝑎𝑟𝑒1 says that
when 𝐻 (𝑥) = 𝑜.share() is subscribed the first time in a call
𝑥 .sub(), 𝑜 is subscribed and the heap 𝐻 is updated so that 𝑥
is mapped to share(𝑜, 𝑟 ), where 𝑟 points to the subscription
to 𝑜 . By Rule 𝑆𝑆ℎ𝑎𝑟𝑒2, each subsequent call to 𝑥 .sub() reduces
to sharing(𝑥), which is a subscription value that represents
shared access to share(𝑜, 𝑟 ).
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𝑜 = fromEvent(𝑒𝑙𝑚, 𝑒𝑣𝑡)
𝐻,𝑜.sub() { 𝐻, fromEvent(𝑒𝑙𝑚, 𝑒𝑣𝑡) 𝑆𝐹𝑟𝑜𝑚

𝑜 = combine(𝑜1, 𝑜2)
𝐻,𝑜1.sub() → 𝐻1, 𝑟1
𝐻1, 𝑜2.sub() → 𝐻2, 𝑟2

𝐻,𝑜.sub() { 𝐻2, combine(𝑟1, 𝑟2, 𝜖, 𝜖, 0)
𝑆𝐶𝑜𝑚𝑏𝑖𝑛𝑒

𝑜 = 𝐻, concat(𝑜1, 𝑜2)
𝐻,𝑜1.sub() → 𝐻1, 𝑟1

𝐻,𝑜.sub() { 𝐻1, concat(𝑟1, 𝑜2)
𝑆𝐶𝑜𝑛𝑐𝑎𝑡

𝑜 = 𝑜 ′ .every(𝑓 ) 𝐻,𝑜 ′ .sub() → 𝐻 ′, 𝑟

𝐻, 𝑜.sub() { 𝐻 ′, every(𝑟, 𝑓 ) 𝑆𝐸𝑣𝑒𝑟𝑦

𝑜 = 𝑜 ′ .catchError(𝑓 )
𝐻,𝑜 ′ .sub() → 𝐻 ′, 𝑟

𝐻, 𝑜.sub() { 𝐻 ′, catchError(𝑟, 𝑓 ) 𝑆𝐶𝑎𝑡𝑐ℎ

𝐻 (𝑥) = 𝑜.share()
𝐻,𝑜.sub() → 𝐻 ′, 𝑟

𝐻 ′′ = 𝐻 ′ [𝑥 ↦→ share(𝑜, 𝑟 )]
𝐻, 𝑥 .sub() { 𝐻 ′′, sharing(𝑥) 𝑆𝑆ℎ𝑎𝑟𝑒1

𝐻 (𝑥) = share(𝑜, 𝑟 )
𝐻, 𝑥 .sub() { 𝐻, sharing(𝑥) 𝑆𝑆ℎ𝑎𝑟𝑒2

𝑜 = 𝑜 ′ .take(𝑛) 𝐻,𝑜 ′ .sub() → 𝐻 ′, 𝑟

𝐻, 𝑜.sub() { 𝐻 ′, take(𝑟, 𝑛) 𝑆𝑇𝑎𝑘𝑒

𝑜 = 𝑜 ′ .map(𝑓 ) 𝐻,𝑜 ′ .sub() → 𝐻 ′, 𝑟

𝐻, 𝑜.sub() { 𝐻 ′, map(𝑟, 𝑓 ) 𝑆𝑀𝑎𝑝

𝑜 = 𝑜 ′ .switchMap(𝑓 )
𝐻,𝑜 ′ .sub() → 𝐻 ′, 𝑟

𝐻, 𝑜.sub() { 𝐻 ′, switchMap(𝑟, 𝑓 , 𝜖, false) 𝑆𝑆𝑤𝑖𝑡𝑐ℎ

Figure 8. The rules for subscribe operations.

Unsubscribe Operations. While the subscribe operation
constructs the subscription graph from the observables, the
unsubscribe operation does the opposite by removing the
subscriptions to the observables from the heap. Rule 𝐸𝑈𝑛𝑠𝑢𝑏

in Figure 7 evaluates 𝑟 .unsub() by first applying the rules
for unsubscribe operation in Figure 9 and then removing the
mapping of 𝑟 from the heap. The rules in Figure 9 apply the
𝐸𝑈𝑛𝑠𝑢𝑏 rule to the references in each subscription value to
unsubscribe them recursively.

The only exceptions are the rules for the shared observable,
which uses reference counting to decide whether to unsub-
scribe its source. By Rule 𝑈𝑆ℎ𝑎𝑟𝑒1, if a shared observable 𝑥 is
still used by another subscription 𝑟 ′, then the unsubscribe
operation 𝑟 .unsub() does not change the heap. Otherwise, by
Rule𝑈𝑆ℎ𝑎𝑟𝑒2, the source observable of 𝑟 will be unsubscribed.

𝐻 (𝑟 ) = fromEvent(𝑒𝑙𝑚, 𝑒𝑣𝑡)
𝐻, 𝑟 .unsub() { 𝐻

𝑈𝐹𝑟𝑜𝑚

𝐻 (𝑟 ) = combine(𝑟1, 𝑟2, 𝑣1, 𝑣2, 𝑛)
𝐻, 𝑟1.unsub() → 𝐻1
𝐻1, 𝑟2 .unsub() → 𝐻2

𝐻, 𝑟 .unsub() { 𝐻2
𝑈𝐶𝑜𝑚𝑏𝑖𝑛𝑒

𝐻 (𝑟 ) = concat(𝑟1, 𝑜2)
𝐻, 𝑟1.unsub() → 𝐻1

𝐻, 𝑟 .unsub() { 𝐻1
𝑈𝐶𝑜𝑛𝑐𝑎𝑡

𝐻 (𝑟 ) = every(𝑟 ′, 𝑓 ) 𝐻, 𝑟 ′ .unsub() → 𝐻 ′

𝐻, 𝑟 .unsub() { 𝐻 ′ 𝑈𝐸𝑣𝑒𝑟𝑦

𝐻 (𝑟 ) = catchError(𝑟 ′, 𝑓 )
𝐻, 𝑟 ′ .unsub() → 𝐻 ′

𝐻, 𝑟 .unsub() { 𝐻 ′ 𝑈𝐶𝑎𝑡𝑐ℎ

𝐻 (𝑟 ) = sharing(𝑥)
∃𝑟 ′ ≠ 𝑟 . 𝐻 (𝑟 ′) = sharing(𝑥)

𝐻, 𝑟 .unsub() { 𝐻
𝑈𝑆ℎ𝑎𝑟𝑒1

𝐻 (𝑟 ) = sharing(𝑥) 𝐻 (𝑥) = share(𝑜, 𝑟 ′)
�𝑟 ′′ ≠ 𝑟 . 𝐻 (𝑟 ′′) = sharing(𝑥)

𝐻, 𝑟 ′ .unsub() → 𝐻 ′

𝐻, 𝑟 .unsub() { 𝐻 ′ [𝑥 ↦→ 𝑜.share()] 𝑈𝑆ℎ𝑎𝑟𝑒2

𝐻 (𝑟 ) = take(𝑟 ′, 𝑛) 𝐻, 𝑟 ′ .unsub() → 𝐻 ′

𝐻, 𝑟 .unsub() { 𝐻 ′ 𝑈𝑇𝑎𝑘𝑒

𝐻 (𝑟 ) = map(𝑟 ′, 𝑓 ) 𝐻, 𝑟 ′ .unsub() → 𝐻 ′

𝐻, 𝑟 .unsub() { 𝐻 ′ 𝑈𝑀𝑎𝑝

𝐻 (𝑥) = switchMap(𝑟1, 𝑓 , 𝑟2, 𝑏)
𝐻, 𝑟1.unsub() → 𝐻1
𝐻1, 𝑟2 .unsub() → 𝐻2

𝐻, 𝑟 .unsub() { 𝐻2
𝑈𝑆𝑤𝑖𝑡𝑐ℎ

𝐻 (𝑟 ) = sub(𝑟 ′, 𝑓 ) 𝐻, 𝑟 ′ .unsub() → 𝐻 ′

𝐻, 𝑟 .unsub() { 𝐻 ′ 𝑈𝑆𝑢𝑏

Figure 9. The rules for unsubscribe operations.

3.4 Event Propagation
Once a subscription graph is constructed, the next stage of

computation is event propagation, which may be interleaved
with further modification to the subscription graph. The
event propagation computation is described by the rules in
Figure 10 and 11, where each reduction step has the form
of 𝐻,𝑄 → 𝐻 ′, 𝑄 ′. Each rule (except Rule 𝑅𝐹𝑟𝑜𝑚) removes
an event and subscription pair (𝑡, 𝑟1) from the front of the
event queue 𝑄 and sends 𝑡 to 𝑟1’s subscriber(s) – 𝑟 , which
may trigger further updates to the heap and the queue.
Most of the rules are concerned with next(𝑣) event and

end event. By Rule 𝑅𝐸𝑟𝑟𝑜𝑟 , the error event from a reference
5
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𝑟 is forwarded by default to the subscriber of 𝑟 . This rule
applies to the error propagation of all observables except the
shared observable, which is handled by Rule 𝑅𝑆ℎ𝑎𝑟𝑒
By Rule 𝑅𝐶𝑎𝑡𝑐ℎ , the error event of 𝑟 ′ can be handled by

the subscription 𝐻 (𝑟 ) = catchError(𝑟 ′, 𝑓 ), which calls the
error handler 𝑓 to obtain an observable 𝑜 , subscribes to 𝑜 , and
maps 𝑟 to the subscription to 𝑜 . In the end, 𝑟 ′ is unsubscribed.
When processing events in the subscription graph, the

new events may be added to the back or the front of the
queue. For example, by Rule 𝑅𝐹𝑟𝑜𝑚 , the event emitted from
the subscription to fromEvent(𝑒𝑙𝑚, 𝑒𝑣𝑡) is added to the back
of the event queue. This is consistent with the event handling
of JavaScript, where asynchronous events are processed in
the macro task queue.
Other than external events such as those from DOM el-

ements, there are also internal events created by RxJS op-
erators. For example, the combine operator emits the latest
values from its sources when one of them emits (after both
have emitted). By Rule 𝑅𝐶𝑜𝑚𝑏𝑖𝑛𝑒2, the event of the combine
operator is put in front of the queue so that it is received im-
mediately by the subscriber of this observable. Rule𝑅𝐶𝑜𝑚𝑏𝑖𝑛𝑒1
applies to the case when one of the source observable has not
emitted any event. By Rules 𝑅𝐶𝑜𝑚𝑏𝑖𝑛𝑒3 and 𝑅𝐶𝑜𝑚𝑏𝑖𝑛𝑒4, an end
event is emitted after all source observables have completed.
The end event is also placed in front of the queue so that it
is received immediately by the subscriber.
By Rules 𝑅𝐶𝑜𝑛𝑐𝑎𝑡1 and 𝑅𝐶𝑜𝑛𝑐𝑎𝑡2, concat(𝑜1, 𝑜2) combines

the event streams of 𝑜1 and 𝑜2 sequentially such that it sub-
scribes to 𝑜1 first and after 𝑜1 completes, it subscribes to 𝑜2.
The observable 𝑜.every(𝑓 ) emits a false value immediately if
an event value from 𝑜 does not satisfy the predicate function
𝑓 (by Rule 𝑅𝐸𝑣𝑒𝑟𝑦1). It emits a true value after all its events
satisfy 𝑓 (by Rules 𝑅𝐸𝑣𝑒𝑟𝑦2 and 𝑅𝐸𝑣𝑒𝑟𝑦3).
By Rule 𝑅𝑆ℎ𝑎𝑟𝑒 , the observable 𝑜.share() broadcasts the

events of 𝑜 to all subscribers of the shared observable. The
observable 𝑜.take(𝑛) forwards the first 𝑛 events of 𝑜 to its
subscriber (by Rules 𝑅𝑇𝑎𝑘𝑒1 and 𝑅𝑇𝑎𝑘𝑒2) or until 𝑜 emits an
end event (by Rule 𝑅𝑇𝑎𝑘𝑒3). Note that if the subscription 𝑟 ′

of 𝑜 is still running after 𝑛 events have been emitted, it must
be unsubscribed (Rule 𝑅𝑇𝑎𝑘𝑒2).

By Rules 𝑅𝑀𝑎𝑝1 and 𝑅𝑀𝑎𝑝2, the observable 𝑜.map(𝑓 ) trans-
forms each next(𝑣) event from 𝑜 and re-emits the result. For
𝑜.switchMap(𝑓 ), there are 5 rules: Rule 𝑅𝑆𝑤𝑖𝑡𝑐ℎ1 says that
the events from the inner observable are re-emitted. Rules
𝑅𝑆𝑤𝑖𝑡𝑐ℎ2 and 𝑅𝑆𝑤𝑖𝑡𝑐ℎ3 describe how the event next(𝑣) from
the outer observable interrupts the inner observable (if any)
and starts a new subscription to the observable evaluated
from 𝑓 (𝑣). Rules 𝑅𝑆𝑤𝑖𝑡𝑐ℎ4 and 𝑅𝑆𝑤𝑖𝑡𝑐ℎ5 say that if both of the
outer and inner observables have completed, then an end
event is emitted.

Rules 𝑅𝑆𝑢𝑏1, 𝑅𝑆𝑢𝑏2, and 𝑅𝑆𝑢𝑏3 define the behavior of a top-
level subscription 𝑜.sub(𝑓 ), which calls 𝑓 with 𝑣 for each
next(𝑣) event from 𝑜 until an end event is emitted. It stops
the subscription to 𝑜 if an error is emitted. Note that in RxJS,

𝐻 (𝑟 ) = fromEvent(𝑒𝑙𝑚, 𝑒𝑣𝑡)
𝑒𝑙𝑚 emits 𝑒𝑣𝑡

𝐻,𝑄 → 𝐻,𝑄@[(next(𝑒𝑣𝑡), 𝑟 )] 𝑅𝐹𝑟𝑜𝑚

𝐻 (𝑟 ) = combine(𝑟𝑖 , 𝑟 𝑗 , 𝑣𝑖 , 𝜖, 𝑛) 𝑖 ≠ 𝑗

𝐻 ′ = 𝐻 [𝑟 ↦→ combine(𝑟𝑖 , 𝑟 𝑗 , 𝑣, 𝜖, 𝑛)]
𝐻, (next(𝑣), 𝑟𝑖 ) :: 𝑄 → 𝐻 ′, 𝑄

𝑅𝐶𝑜𝑚𝑏𝑖𝑛𝑒1

𝐻 (𝑟 ) = combine(𝑟𝑖 , 𝑟 𝑗 , 𝑣𝑖 , 𝑣 𝑗 , 𝑛) 𝑖 ≠ 𝑗

𝐻 ′ = 𝐻 [𝑟 ↦→ combine(𝑟𝑖 , 𝑟 𝑗 , 𝑣, 𝑣 𝑗 , 𝑛)]
𝑄 ′ = (next((𝑣, 𝑣 𝑗 )), 𝑟 ) :: 𝑄

𝐻, (next(𝑣), 𝑟𝑖 ) :: 𝑄 → 𝐻 ′, 𝑄 ′ 𝑅𝐶𝑜𝑚𝑏𝑖𝑛𝑒2

𝐻 (𝑟 ) = combine(𝑟𝑖 , 𝑟 𝑗 , 𝑣𝑖 , 𝑣 𝑗 , 0) 𝑖 ≠ 𝑗

𝐻 ′ = 𝐻 [𝑟 ↦→ combine(𝑟𝑖 , 𝑟 𝑗 , 𝑣𝑖 , 𝑣 𝑗 , 1)]
𝐻, (end, 𝑟𝑖 ) :: 𝑄 → 𝐻 ′, 𝑄

𝑅𝐶𝑜𝑚𝑏𝑖𝑛𝑒3

𝐻 (𝑟 ) = combine(𝑟𝑖 , 𝑟 𝑗 , 𝑣𝑖 , 𝑣 𝑗 , 1) 𝑖 ≠ 𝑗

𝐻, (end, 𝑟𝑖 ) :: 𝑄 → 𝐻, (end, 𝑟 ) :: 𝑄 𝑅𝐶𝑜𝑚𝑏𝑖𝑛𝑒4

𝐻 (𝑟 ) = concat(𝑟1, 𝑜2)
𝐻, (next(𝑣), 𝑟1) :: 𝑄 → 𝐻, (next(𝑣), 𝑟 ) :: 𝑄 𝑅𝐶𝑜𝑛𝑐𝑎𝑡1

𝐻 (𝑟 ) = concat(𝑟1, 𝑜2)
𝐻,𝑜2 .sub() { 𝐻 ′, 𝑠 𝐻 ′′ = 𝐻 ′ [𝑟 ↦→ 𝑠]

𝐻, (end, 𝑟1) :: 𝑄 → 𝐻 ′′, 𝑄
𝑅𝐶𝑜𝑛𝑐𝑎𝑡2

𝐻 (𝑟 ) = every(𝑟1, 𝑓 )
𝐻, 𝑓 (𝑣) → 𝐻 ′, false
𝐻 ′, 𝑟1.unsub() → 𝐻 ′′

𝑄 ′ = [(next(false), 𝑟 ), (end, 𝑟 )]@𝑄

𝐻, (next(𝑣), 𝑟1) :: 𝑄 → 𝐻 ′′, 𝑄 ′ 𝑅𝐸𝑣𝑒𝑟𝑦1

𝐻 (𝑟 ) = every(𝑟1, 𝑓 )
𝐻, 𝑓 (𝑣) → 𝐻 ′, true

𝐻, (next(𝑣), 𝑟1) :: 𝑄 → 𝐻 ′, 𝑄
𝑅𝐸𝑣𝑒𝑟𝑦2

𝐻 (𝑟 ) = every(𝑟1, 𝑓 )
𝑄 ′ = [(next(true), 𝑟 ), (end, 𝑟 )]@𝑄

𝐻, (end, 𝑟1) :: 𝑄 → 𝐻,𝑄 ′ 𝑅𝐸𝑣𝑒𝑟𝑦3

𝐻 (𝑟 ) = catchError(𝑟1, 𝑓 )
𝐻, 𝑓 () → 𝐻1, 𝑜 𝐻1, 𝑜 .sub() { 𝐻2, 𝑠

𝐻2 [𝑟 ↦→ 𝑠], 𝑟1.unsub() → 𝐻 ′

𝐻, (error, 𝑟1) :: 𝑄 → 𝐻 ′, 𝑄
𝑅𝐶𝑎𝑡𝑐ℎ

𝑟1 appears in 𝐻 (𝑟 )
𝐻, (error, 𝑟1) :: 𝑄 → 𝐻, (error, 𝑟 ) :: 𝑄 𝑅𝐸𝑟𝑟𝑜𝑟

Figure 10. The reduction rules for subscriptions 1

separate callback functions can be given to handle the end
and the error events but this detail is omitted for simplicity.

Scheduler and Event Queue. RxJS supports multiple
types of event schedulers. By default, internal events are
scheduled synchronously. For example, the events of the

6
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∃𝑥 . 𝐻 (𝑥) = share(𝑜, 𝑟 )
∀𝑖 ∈ {1..𝑛}. 𝐻 (𝑟𝑖 ) = sharing(𝑥)
𝑄 ′ = [(𝑡, 𝑟1), . . . , (𝑡, 𝑟𝑛)]@𝑄

𝐻, (𝑡, 𝑟 ) :: 𝑄 → 𝐻,𝑄 ′ 𝑅𝑆ℎ𝑎𝑟𝑒

𝐻 (𝑟 ) = take(𝑟 ′, 𝑛) 𝑛 ≥ 2
𝐻 ′ = 𝐻 [𝑟 ↦→ take(𝑟 ′, 𝑛 − 1)]
𝐻, (𝑡, 𝑟 ′) :: 𝑄 → 𝐻 ′, (𝑡, 𝑟 ) :: 𝑄 𝑅𝑇𝑎𝑘𝑒1

𝐻 (𝑟 ) = take(𝑟 ′, 1) 𝐻, 𝑟 ′ .unsub() → 𝐻 ′

𝐻, (𝑡, 𝑟 ′) :: 𝑄 → 𝐻 ′, [(𝑡, 𝑟 ), (end, 𝑟 )]@𝑄
𝑅𝑇𝑎𝑘𝑒2

𝐻 (𝑟 ) = take(𝑟 ′, 𝑛)
𝐻, (end, 𝑟 ′) :: 𝑄 → 𝐻, (end, 𝑟 ) :: 𝑄 𝑅𝑇𝑎𝑘𝑒3

𝐻 (𝑟 ) = map(𝑟 ′, 𝑓 ) 𝐻, 𝑓 (𝑣) → 𝐻 ′, 𝑣 ′

𝐻, (next(𝑣), 𝑟 ′) :: 𝑄 → 𝐻 ′, (next(𝑣 ′), 𝑟 ) :: 𝑄 𝑅𝑀𝑎𝑝1

𝐻 (𝑟 ) = map(𝑟 ′, 𝑓 )
𝐻, (end, 𝑟 ′) :: 𝑄 → 𝐻, (end, 𝑟 ) :: 𝑄 𝑅𝑀𝑎𝑝2

𝐻 (𝑟 ) = switchMap(𝑟1, 𝑓 , 𝑟2, 𝑏)
𝐻, (next(𝑣), 𝑟2) :: 𝑄 → 𝐻, (next(𝑣), 𝑟 ) :: 𝑄 𝑅𝑆𝑤𝑖𝑡𝑐ℎ1

𝐻 (𝑟 ) = switchMap(𝑟1, 𝑓 , 𝜖, 𝑏)
𝐻, 𝑓 (𝑣) → 𝐻1, 𝑜 𝐻1, 𝑜 .sub() → 𝐻2, 𝑟2
𝐻3 = 𝐻2 [𝑟 ↦→ switchMap(𝑟1, 𝑓 , 𝑟2, 𝑏)]

𝐻, (next(𝑣), 𝑟1) :: 𝑄 → 𝐻3, 𝑄
𝑅𝑆𝑤𝑖𝑡𝑐ℎ2

𝐻 (𝑟 ) = switchMap(𝑟1, 𝑓 , 𝑟2, 𝑏)
𝐻, 𝑓 (𝑣) → 𝐻1, 𝑜 𝐻1, 𝑜 .sub() → 𝐻2, 𝑟

′
2

𝐻3 = 𝐻2 [𝑟 ↦→ switchMap(𝑟1, 𝑓 , 𝑟 ′2, false)]
𝐻3, 𝑟2.unsub() → 𝐻 ′

𝐻, (next(𝑣), 𝑟1) :: 𝑄 → 𝐻 ′, 𝑄
𝑅𝑆𝑤𝑖𝑡𝑐ℎ3

𝐻 (𝑟 ) = switchMap(𝑟1, 𝑓 , 𝑟2, true)
𝑄 ′ = (end, 𝑟 ) :: 𝑄

𝐻, (end, 𝑟𝑖 ) :: 𝑄 → 𝐻,𝑄 ′ 𝑖 ∈ {1, 2} 𝑅𝑆𝑤𝑖𝑡𝑐ℎ4

𝐻 (𝑟 ) = switchMap(𝑟1, 𝑓 , 𝑟2, false)
𝐻 ′ = 𝐻 [𝑟 ↦→ switchMap(𝑟1, 𝑓 , 𝑟2, true)]
𝐻, (end, 𝑟𝑖 ) :: 𝑄 → 𝐻 ′, 𝑄 𝑖 ∈ {1, 2} 𝑅𝑆𝑤𝑖𝑡𝑐ℎ5

𝐻 (𝑟 ) = sub(𝑟 ′, 𝑓 ) 𝑓 (𝑣)
𝐻, (next(𝑣), 𝑟 ′) :: 𝑄 → 𝐻,𝑄

𝑅𝑆𝑢𝑏1

𝐻 (𝑟 ) = sub(𝑟 ′, 𝑓 )
𝐻, (end, 𝑟 ′) :: 𝑄 → 𝐻,𝑄

𝑅𝑆𝑢𝑏2

𝐻 (𝑟 ) = sub(𝑟 ′, 𝑓 ) 𝐻, 𝑟 ′ .unsub() { 𝐻 ′

𝐻, (error, 𝑟 ′) :: 𝑄 → 𝐻 ′, 𝑄
𝑅𝑆𝑢𝑏3

Figure 11. The reduction rules for subscriptions 2

combine operator can be passed to its subscribers directly
via function calls. However, a subscription can run on sched-
ulers such as the async scheduler, which is based on the

JavaScript queue for asynchronous events. The rules in Fig-
ure 10 and 11 correspond to the default scheduler where the
internal events are placed in front of the queue so that they
must be processed immediately. To emulate the behavior
of an async scheduler, we can modify the rules so that the
internal events are placed at the end of 𝑄 so that they are
processed after the events on the queue are processed.

3.5 Additional Operators
RxJS has over 100 operators and this semantics only con-

sidered a subset selected based on functionalities, which
include combination, creation, error handling, multicasting,
filtering, and transformation. Other operators in these classes
can be formalized in similar ways with additional complexi-
ties such as buffering.
For example, the operator o.concatAll() subscribes to

each of the observables emitted from o and concatenates the
resulting event streams. This operator uses a buffer to hold
the new observables emitted from 𝑜 while waiting for the
current observable to complete. The operator zip(o1,o2)
pairs events from o1 and o2 until one of them completes and
buffers are needed to hold events from either observables in
case that they do not emit at the same rate.
Some operators may be implemented using others. For

example, o.combineAll() combines the events from the
observables emitted from o in tuples, which can be imple-
mented using combineLatest after collecting all the observ-
ables from o. The operator o.endsWith(x) appends to the
events from o with the value x, which can be implemented
with concat and the operator of (that creates an observable
out of values).

The semantics of some operators is difficult to characterize
concisely. For example, the operator o.debounce(selector)
controls the emission rate of o by racing its events with the
observable returned from the selector function. Other filter
operators such as distinct and throttle also have com-
plex semantics related to the value and timing of the events.
Even more complex are the transformation operators that
group the source events using buffers or windows based on
the event count, event timing, and timing observables.

Lastly, the multicasting operators use classes like Subject
to broadcast events from a source observable to multiple sub-
scribers. The operators such as window and groupBy can use
Subject to implement observables that emit events selected
from a source observable. The Subject class also has meth-
ods for direct event emission, which can be used to emit
events for a observable from any part of the program as a
side effect. While we can represent operators like share, we
have not modeled this type of event emission.

4 Debugging with Subscription Graph
The semantics of 𝜆𝑟𝑥 provides a simplified model for de-

scribing the debugging support for RxJS programs. In this
7
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section, we discuss the representation of stack trace, de-
tecting unexpected states of observables, and checking the
invariant of subscription graph.

4.1 Stack Trace
For sequential programs, debuggers can be used to set

break-points to pause the execution so that the programmers
can examine the runtime states and discover the sources of
errors. The runtime state includes a call stack with a list of
stack frames that contains the local variables. The call stack
can be dumped as a stack trace if a program crashes due
to an exception. However, for RxJS program, such a stack
trace is not very informative for debugging purposes. The
dataflow information of a subscription graph is obscured by
the underlying implementation of RxJS. For example, the
event propagation in the subscription graph may appear
as direct function calls, invocation of callback listeners, or
resolution of promises depending on the types of the events
and the event scheduler. Thus, we need a more abstract
representation of the runtime state of a RxJS program.
The stack trace of a RxJS program may include the stack

frames of normal function calls and/or the dataflow paths
from observables to their subscribers. There are three types
of stack traces in a RxJS program.

• The first type represents the construction phase of a
subscription graph, where the stack trace consists of
only stack frames.

• The second type represents the reactive phase of the
computation, where the trace includes only dataflow
paths. Since the only event source in 𝜆𝑟𝑥 is asynchro-
nous, event propagation will not start until the syn-
chronous computation has completed, which means
that the call stack is empty at this point.

• The third type includes dataflow paths followed by
stack frames, which may occur when an expression
break-point is reached during event propagation. For
example, in 𝑜 = 𝑜 ′ .switchMap(𝑓 ), when the outer ob-
servable 𝑜 ′ emits an event, the function 𝑓 runs. If a
break-point within 𝑓 is reached, then the stack trace
will include the dataflow path that leads to 𝑜 and the
call stack that leads to the break-point in 𝑓 .

Break point. In 𝜆𝑟𝑥 , we can set break-points for expres-
sions by placing labels. For example, the expression 𝑒ℓ has
the break-point ℓ . When a computation reaches the break-
point ℓ as shown below, it pauses with the current heap 𝐻

and call stack 𝐸.
𝐻1, 𝑒1 → 𝐻2, 𝑒2

𝐻1, 𝐸 [𝑒ℓ1] → 𝐻2, 𝐸 [𝑒2]

We can set break-point for subscription 𝑠 by attaching a
label ℓ to the observable that 𝑠 is reduced from.

𝐻,𝑜ℓ .sub() { 𝐻 ′, 𝑠ℓ

If an event is received at or emitted from a subscription
𝑠 with a break-point ℓ , where 𝐻 (𝑟 ) = 𝑠ℓ and 𝐻,𝑄 → 𝐻 ′, 𝑄 ′,
then the program pauses and allows programmers to inspect
the current state 𝐻 ′ and 𝑄 ′. This type of break-points can
be enhanced with filters to limit the type of events.

Dataflow Path. The stack trace may include dataflow
path if a break-point is reached at a subscription or at an ex-
pression that runs due to event propagation (e.g. switchMap).
The dataflow path should allow a programmer to trace the
event sources from the break-point. Since each subscription
has references to its source subscriptions, we can follow
these references to recover the dataflow path. However, if a
subscription has multiple event sources (e.g. combine), then
we must know the latest event source, which can be imple-
mented with a flag. Detailed data such as the last 𝑘 events
and their time-stamps can be added to help with debugging.

4.2 Subscription State
We can debug a RxJS program by monitoring the state of a

subscription. RxJS has numerous operators and the subscrip-
tion to each operator have multiple states. If a subscription
enters a state unexpected by the programmers, the resulting
behavior may cause an error that is hard to debug.
For example, the subscription to a combine observable

will emit an event only after both of its source observables
have emitted at least one event. If one of the source observ-
able completes before emitting any value, then the combine
observable will not emit anything regardless how the other
source observable behaves. Thus, it may be useful to raise
an alert that one of the source observables to a combine ob-
servable only emits an end event. This may help identify the
cause why a combine observable never emits.
For the subscription concat(𝑟1, 𝑜2), we can raise an alert

if 𝑟1 completes without emitting any value. This may be
incorrect since the result of the concatenation would be
entirely that of 𝑜2, which may be unexpected.

For the subscription every(𝑟1, 𝑓 ), if its source observable
𝑟1 ends before firing any event, it will emit true and then
complete instead of ending without emitting any value. This
behavior may not be expected either.
For the subscription switchMap(𝑟1, 𝑓 , 𝑟2, 𝑏), if the outer

observable 𝑟1 emits before the inner observable 𝑟2 emits any
event, then the switchMap observable will not fire any events
from 𝑟2. Furthermore, if 𝑟1 always emits events at a higher
rate than 𝑟2, then the switchMap may not emit anything.
Thus, we may want to raise an alert if an inner observable
of switchMap is unsubscribed before it emits any event.

4.3 Runtime Invariant
When a RxJS program crashes, it is not always clear where

the error comes from, especially when there are multiple
event sources. An unhandled error from any of the event
sources can cause the entire program to stop. One way to
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safe𝐻 (fromEvent(_, _), 1)
safe𝐻 (𝑟1, 𝑛1) safe𝐻 (𝑟2, 𝑛2) 𝑛1 + 𝑛2 ≤ 𝑛

safe𝐻 (combine(𝑟1, 𝑟2, _, _, _), 𝑛)
safe𝐻 (𝑟, 𝑛)

safe𝐻 (concat(𝑟, _), 𝑛)
safe𝐻 (𝑟, 𝑛)

safe𝐻 (every(𝑟, _), 𝑛)
safe𝐻 (𝑟, 1)

safe𝐻 (catchError(𝑟, _), 0)
safe𝐻 (𝑟, 𝑛)

safe𝐻 (sharing(𝑟 ), 𝑛)
safe𝐻 (𝑟, 𝑛)

safe𝐻 (take(𝑟, _), 𝑛)
safe𝐻 (𝑟, 𝑛)

safe𝐻 (map(𝑟, _), 𝑛)
safe𝐻 (𝑟1, 𝑛1) safe𝐻 (𝑟2, 𝑛2) 𝑛1 + 𝑛2 ≤ 𝑛

safe𝐻 (switchMap(𝑟1, _, 𝑟2, _), 𝑛)
safe𝐻 (𝑟, 1)

safe𝐻 (sub(𝑟, _), 0)
safe𝐻 (𝐻 (𝑟 ), 𝑛)
safe𝐻 (𝑟, 𝑛)

∀𝑟 . 𝐻 (𝑟 ) = 𝑠 = sub(_, _) safe𝐻 (𝑠, 0)
safe(𝐻 )

Figure 12. The safety rules that check the number of event
sources guarded by a catch observable or root subscriber.

prevent this is to ensure that all potential sources of errors
are protected by a catch observable so that the source of
an error can be uniquely identified and the program can
possibly recover from the error. To this end, we can check
the subscription graph to ensure that each catchError (or
the root subscriber) can trace to at most one event source
without going through another catchError.

Figure 12 shows the safety rules to checkwhether in a heap
𝐻 , each event source (i.e. fromEvent) is uniquely guarded by
a catchError or root subscriber. The predicate safe𝐻 (𝑠, 𝑛)
says that in the subscription 𝑠 , there are at most 𝑛 event
sources that are not guarded by a catchError or sub. Given
𝑒 , if ∅, 𝑒 →∗ 𝐻, 𝑣 , we can check the safety of 𝐻 by checking
the predicate safe𝐻 (𝑠, 0) for each 𝑠 = sub(𝑥, 𝑓 ) in 𝐻 , where
→∗ is the transitive closure of→.
Since the subscription graph in the heap changes during

computation, we also need to recheck 𝐻 when new sub-
scriptions are added. Among the RxJS operators that we
considered, only concat, catchError, and switchMap oper-
ators will dynamically add subscriptions to the heap. Note
that since operators like map and every can execute arbi-
trary expression, it can add subscriptions to the heap as well
though this is not how they are typically used. Thus, we can
check the safety of a RxJS program 𝑒 as follows:

• If ∅, 𝑒 →∗ 𝐻, 𝑣 , then safe(𝐻 ) (as defined in Figure 12).
• If 𝐻,𝑄 → 𝐻 ′, 𝑄 ′ by Rule 𝑅𝐶𝑜𝑛𝑐𝑎𝑡2, 𝑅𝐶𝑎𝑡𝑐ℎ , or 𝑅𝑆𝑤𝑖𝑡𝑐ℎ3,
then safe(𝐻 ′).

For the updated heap, we can just check the new subscrip-
tions instead of the entire heap for better efficiency.

5 Implementation
To provide a testing ground for the proposed semantics, we

implemented a subset of RxJS operators using a thread-like
abstractions called AsyncM [28], which allows asynchronous
computation be implemented like a cancellable thread. This
implementation includes 100 RxJS operators with about 2500
lines of code (https://github.com/tianzhao/rxjs).
AsyncM allows us to chain asynchronous computation just

like JavaScript promises except that AsyncM can be inter-
rupted via an associated progress object. This abstraction
provides a convenient way to implement observables like
fromEvent, which waits for external events in a loop.

Unlike the operational semantics, the implementation does
not need to maintain an explicit queue to hold external
events, since AsyncM uses promises to handle asynchronous
events. Also unlike the semantic, which uses heap variables
to maintain bidirectional relation between an observable
and its sources, in the implementation, an observable uses
variables to access its sources but uses an emitter object to
send events to its subscribers.

Subscription. When an observable is subscribed, two
threads are launched, which share an emitter and a progress
object that are stored in the returned subscription object.
This structure is shown in Figure 13.

Figure 13. The subscription of an observable, where the
circles represent two threads. The left thread runs the ob-
servable to emit events and the right thread listens on the
emitter and runs the continuation k.

The class for observable has a subscribe method that runs
its argument 𝑘 for each event value until either the end event
is emitted or an error has percolated to the top, which cancels
the subscription.

5.1 Composite Observable
The composition operators are derived from the methods

of observable class. In this section, we explain a few of the
operators.

map. The call o.map(f) applies a synchronous function
𝑓 to each event value from o except the end event. Any
exception in 𝑓 is caught and emitted as an error event. If the
input event is an error, then it is re-emitted by default. This
implementation is illustrated in Figure 14.
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Figure 14.Map the function 𝑓 to an observable.

switchMap. The call o.switchMap(f) applies 𝑓 to each
event of the outer observable o, which returns an inner ob-
servable. Each time the outer observable emits an event, the
current inner observable (if exists) is unsubscribed and a new
inner observable is subscribed. This relation is illustrated in
Figure 15.

Figure 15. Switch-map the function 𝑓 to an observable.

The implementation of switchMap is similar to that of
map in that any exception raised in 𝑓 is caught and emitted
as an error event. The subscription to inner observable is
referenced as a child of the subscription to the switchMap.
An error event from the outer or the inner observable is
re-emitted by default.
One tricky thing in switchMap is to determine when the

end is. In RxJS, the end event does not have a value. For
example, of(1,2,3).filter(x=>x<3)will emit 1 and 2 and
then end. Thus, we cannot determine the end of switchMap
by observing the end of the last inner observable since we do
not know whether an inner observable is the last one until
the outer observable emits its end event.

The implementation of switchMap uses a flag to mark the
end of the outer or the inner observable. When the outer
observable emits end event, switchMap will emit the end
event if the flag is set (which indicates that the current inner
observable has ended). Otherwise, it will set the flag and
wait for the inner observable (which we now know is the
last one) to end.

concatAll. A few of the RxJS operators are buffered such
as concatAll, which concatenates a stream of observables
as a single observable. Each inner observable must end be-
fore the next one starts. To prevent the loss of the outer
observable events, a channel is used. A channel will block its

read method if it is empty and block its write method if it is
full (if a bound is set). The channel class is also implemented
with AsyncM so that threads blocked on it can be cancelled.

The concatAll operator writes the inner observable emit-
ted from the outer observable into the channel buffer and
subscribes to each inner observable read from the channel.
The concatAll observable ends when an end event is read
from the channel.

share. The RxJS observables are not shared by default so
that each subscription starts a new instance of an observ-
able. RxJS allows an observable be shared through its share
operator, which returns a subject that starts running when
it is first subscribed and emits events shared by each subse-
quent subscription. The subject uses reference counting to
determine when it should end. That is, when the number of
subscriptions drops to zero, the subject terminates.
The subject class derives from the observable class and

overrides its internal subscribe method so that multiple sub-
scriptions will listen on events from the same emitter. This
design is illustrated in Figure 16.

Figure 16. Share an observable as a subject, where multiple
subscriptions listen on events from the same emitter.

catchError. An observable may emit error events origi-
nated from a primitive or composite observable due to causes
such as a rejected promise or an exception in a map function.
By default, if an error event is not handled, it will propagate
outwards until it reaches the top-level subscriber, when it
will cause all subscriptions be cancelled. An error event can
be handled with the catchError operator, which cancels
the source observable and replaces it with a new one.

The catchError operator subscribes to its source observ-
able with an error handler that will stop the current subscrip-
tion and replace it with the subscription to a new observable.
The new observable is returned from the argument function
𝑓 given the error value. However, if the call to 𝑓 also fails
with an exception, then catchError emits an error event of
its own instead.

Break point. As explained in [1], the difficulties with
debugging RxJS program include the inability to set break
points for expressions such as take(n) and that the stack
trace at a break point does not correspond to the dataflow
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states of the RxJS program. Our design does provide the
ability to inspect the dataflow graphs at break points through
the subscription objects. However, we have not implemented
a way to add break points to expressions like take(n) since
it is only used to compose the observable and the subsequent
event-handling does not go through the call to take(n).

Stack trace. We have implemented a strategy to capture
the subscription graph and the different stack traces when
an error occurs. To capture the stack trace, an error handler
is used at places that would execute client code such as
fmap and switchMap. The error handler will catch any error
thrown from the client code and since the handler is at the
topmost part of the stack running in the reactive code, we
can easily separate the two types of stack by removing the
portion of the stack that share with the handler’s stack.

We examine the stack trace by relying on a non-standard
feature of all major Web browsers and JavaScript runtime, so
it is only possible if the exception value is an instance of the
built-in Error object. To trace the state of the reactive code,
we only need to capture the portion of the subscription graph
prior to the error site. This is done by following through the
edge to the subscription sources.

Runtime Safety Invariant. The safety invariant is imple-
mented by following the rules in Figure 12. Starting from a
root subscriber, we examine the subscription type and make
the appropriate assertion by recursively traversing to the
source and child subscriptions, checking whether each event
source is covered by at least one catchError operator. To
enable rechecking of the subscription graph when a new
subscription is added, each subscription that we came across
during the first traversal is assigned to a location accessible
to its source/child subscriptions. When a new subscription
is added, the subscription assigned previously can be used
as a starting point for rechecking the graph.

6 Related Work
RxJS. The reference implementation1 of RxJS uses Ob-

server Pattern, where an observable passes events to its
concrete observers through a generic observer interface. A
composition operator acts like a bridge between a source
observable and a destination observer where the composi-
tion logic is implemented as a decorator of the destination
observer. Because a source observable is connected to its
intermediate and final observers through references, each
event is passed through specific method calls, which includes
next, complete, and error events. To check the events between
an observable and its intermediate/final observers, a user
has to locate and monitor the correct method calls in many
classes.

In our design, an observable emits events to its intermedi-
ate/final observers through emitters and all types of events

1http://reactivex.io/rxjs

pass through the emitter where users can examine a finite
history of past events, which include event types, values,
and (optional) timing information.
In RxJS, a subscription object unsubscribes by mutating

object states. In our design, observables are implemented us-
ing AsyncM that runs like cancellable threads. In a composite
observable, the subscriptions to the inner/source observables
are child threads. AsyncM supports hierarchical cancellation
so that the cancellation of a thread also cancels its child
threads. This simplifies the implementation since to unsub-
scribe an observable, all it takes is to cancel the subscription
thread.

Debugging tools for RxJS. This work is motivated by
providing helpful debugging information for reactive appli-
cations. Due to the complexity of RxJS, users often rely on
logging to find errors, which may be helped by logging tools
like rxjs-spy2, which adds tag operators to RxJS so that a
trace log can be monitored, paused, and replayed through
console. While logging tool reduces debugging workload,
trace logs can be difficult to interpret by visual inspection
when numerous events are emitted. In comparison, our for-
mal semantics shows that the subscription graph can be
inputs to test functions for automated verification and er-
ror detection. Visualization tools such as RxFiddle [3], and
RxViz3, and rxjs-playground4 help visualize the dataflow
graph and timing of event emissions through (animated)
marble diagrams. These tools are useful for understanding
the semantics of RxJS programs but like trace logs, the re-
sulting diagrams have to be manually inspected.

Concurrency. AsyncM leverages promises [10] to provide
a thread-like concurrency model with cooperative cancella-
tion. While promises do not have builtin methods for cancel-
lation, AsyncM enhances the promise constructs with a more
consistent way to terminate unused computation.

AsyncM is a form of concurrency monad, which is used by
Claessen [6] for supporting a simple form of concurrency
in Haskell and by Li and Zidancwic [15] in their design for
scalable network services. The cancellation mechanism of
AsyncM is similar to the asynchronous exception of Concur-
rent Haskell [18], which allows a thread to terminate another
thread by throwing an asynchronous exception. However,
since JavaScript is not preemptive, the interrupt exceptions
in our design are only received at the locations where the
threads are blocked or polling the thread status.

The progress object in our design is similar to the cancella-
tion token of F# [23, 25] and .Net5. The difference is that our
design integrates cancellation into a thread model, where a
progress (i.e. thread ID) is both the cancellation source and

2https://github.com/cartant/rxjs-spy
3https://rxviz.com/
4https://github.com/hediet/rxjs-playground
5https://docs.microsoft.com/en-us/dotnet/standard/threading/
cancellation-in-managed-threads
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token. The hierarchical structure of threads allows a child
thread to react to cancellation requests to its parent threads
without explicitly linking cancellation tokens.

FRP. Functional reactive programming (FRP) [11, 12] is a
framework for modeling continuously changing behaviors
that react to discrete events. Classic FRP is pull-based, which
detects events by polling in discrete time steps with the
implication that the event latency depends on the step size
and the behaviors are checked for possible switching every
time step. Push-based FRP such as FrTime [7], Flapjax [19],
Scala React [17], ReactiveX [20], and Elm [9] provide timely
responses to events and avoid re-computation when events
do not occur. They wait on event occurrences and only run
when an event occurs.

Many research efforts have been devoted to fix problems
such as space-time leaks and event glitches using methods
such as global dispatcher [19], blocking IO [26], static analy-
sis [14], type-based restrictions [21], mutable memory [24],
arrow-based abstractions [5, 8, 16], and a combination of
arrow and monad [4, 22]. In practice, however, most of the
research designs have not seen wide adoptions like Reac-
tiveX and its JavaScript version RxJS. Despite its flaws, such
as the potential of glitches and space leaks, users find its
wide range of features appealing.

7 Conclusion
In this paper, we have presented a formal semantics for

a selected set of operators in RxJS library. The semantics
clarifies the representation of stack trace for RxJS programs,
identifies potentially unexpected states of observables, and
provides rules for checking sufficient error handling. We
provided an implementation of RxJS based on the semantics,
which uses an abstraction of cancellable threads to imple-
ment observables and their subscriptions. The subscription
graph and the events in each graph node are available for
debugging purpose.
Since JavaScript is single threaded, there are no simulta-

neous events. All external events occur in a sequence while
internal events are processed when they are generated and
before the external events. Thus, our semantics is determin-
istic, where the same sequence of events to a subscription
will trigger the same sequence of reduction rules and result
in the same reactive behavior. However, it is unclear whether
RxJS is entirely deterministic but using our implementation,
programmers can expect predictable outcome.

There are a number of complications in RxJS that are not
considered in the semantics. For example, RxJS supports mul-
tiple forms of scheduling, which by default is synchronous
for internal events. A queue scheduler may be used to pro-
cess interval events in the order in which they are emitted.
RxJS also supports ASAP scheduler that uses the queue for
promises and the async scheduler that schedules internal
events using event loop or animation frame. Our current

semantics corresponds to the default scheduler though it can
be easily modified to model the async scheduler. However,
separate queues are needed for other type of schedulers. Also,
operators like concatAll use buffer to hold events until they
are used but this may lead to lost events if the buffer is fi-
nite or out-of-memory exception if the buffer is unbounded.
Shared observables such as a subject can start, stop, or fire
events as the side effects of some other observables. These
features should be considered to provide accurate modeling
of RxJS programs.
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