
Asynchronous Monad for Reactive IoT Programming
Tian Zhao

tzhao@uwm.edu
University of Wisconsin-Milwaukee

Milwaukee, Wisconsin, USA

Adam Berger
bergerab@uwm.edu

University of Wisconsin-Milwaukee
Milwaukee, Wisconsin, USA

Yonglun Li
yli@uwm.edu

University of Wisconsin-Milwaukee
Milwaukee, Wisconsin, USA

Abstract
Many industrial IoT applications process sensor data over dis-
tributed networks to monitor devices in real-time. Since the
sensor telemetries are transmitted over networks as events,
imperative and event-driven programs are often used to han-
dle IoT data. However, the inverted control flow and shared
global states of these imperative programs make them diffi-
cult to interface with synchronized computation on IoT data.
This problem is further complicated for high-frequency data
such as electric signals, which may require dynamic adjust-
ment to data sampling rate to operate under the constraints
of network and system.
In this paper, we propose a push-pull reactive program-

ming model for IoT application to address this challenge.
This model uses push-streams for asynchronous computa-
tion such as data capturing and user controls and uses pull
streams for synchronized computation such as data analysis.
This model is simpler than push-based models by avoiding
the complexity of glitch prevention through re-sampling in
pull-streams. It is also more flexible than pull-based mod-
els by allowing dynamic adjustment of the sampling rate to
maintain real-time speed of the IoT computation. The push-
stream has a monadic interface, which converts to a pull
stream through buffering. A pull stream converts to a push-
stream when driven by a clock. The dynamic switching of
our streams is based on a monadic abstraction called AsyncM
that uses continuation passing style and a form of cancella-
tion token for asynchronous control. Our model is simple
and can use threads or event callbacks for concurrency.

CCS Concepts: •Computingmethodologies→Concur-
rent computing methodologies; • Software and its en-
gineering → Concurrent programming structures.

Keywords: FRP, asynchronous programming, IoT

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
REBLS ’20, November 16, 2020, Virtual, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8188-8/20/11. . . $15.00
https://doi.org/10.1145/3427763.3428314

ACM Reference Format:
Tian Zhao, Adam Berger, and Yonglun Li. 2020. Asynchronous
Monad for Reactive IoT Programming. In Proceedings of the 7th
ACM SIGPLAN International Workshop on Reactive and Event-Based
Languages and Systems (REBLS ’20), November 16, 2020, Virtual,
USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/
3427763.3428314

1 Introduction
With the proliferation of the web, increasingly more elec-
tronics are being attached to networks. Industrial electrical
systems which once required offline controls and displays
are now able to communicate and be controlled through the
web. The increased demand for these IoT devices causes an
increased demand in their reliability too. Occasionally the
sole purpose of being connected to the web is to run these
reliability checks. We call these “checks” key performance
indicators (KPI). KPIs are calculations performed on signals
(such as voltages or current readings from sensors) which
can tell an end-user the health of the system. As a simple
example, a system could perform an efficiency calculation
for an internet-enabled solar panel to determine whether the
solar panel is performing according to the manufacturer’s
efficiency rating. If the panel is not, the user would know to
further investigate the device.
However, KPIs are often more complex than just a low

sampling-rate point-wise calculation. Some KPIs can push
networks to their limits. For example, a total harmonic distor-
tion (THD) calculation of a current signal requires discrete
sampling at a rate that can reproduce the original contin-
uous signal. Depending on the input signal’s frequency, it
could force the sampling rate to be 10Khz or more. On top
of that, the calculation involves a moving window, whose
window size can vary per signal. A complete system could
have many devices each with many signals each with their
own KPI calculations. To monitor the health of such a sys-
tem, software must be able to notify users of changes to the
KPIs and react to changes with low latency without causing
excessive back-pressure.
A monitoring system that runs computations on high

frequency data from multiple devices must be concurrent,
reactive, and composable. Concurrency is necessary so that
one device’s computations do not block another device’s, as
well as to keep the latency low by processing multiple KPIs
at once. Reactivity allows the system to scale dynamically
in unstable environments. For example, if devices can set

1

https://doi.org/10.1145/3427763.3428314
https://doi.org/10.1145/3427763.3428314
https://doi.org/10.1145/3427763.3428314

REBLS ’20, November 16, 2020, Virtual, USA Tian Zhao, Adam Berger, and Yonglun Li

sampling rates on signals, during a decrease in network speed
it would be advantageous to alter the sampling rate of the
signals to avoid back-pressure. Composability is important
to ensure program correctness is preserved when combining
KPI processes on different signals.

1.1 Challenges of IoT Data Processing

Figure 1. A program that monitors the current THD and the
power of an inverter. The solid lines represent asynchronous
tasks and the dashed lines represent synchronous tasks.

An industrial IoT application runs in real-time with large
amount of data, performs frequent IO operations, and reacts
to asynchronous events. Figure 1 shows a workflow that
monitors the performance of a power inverter by capturing
the voltage and current signals of the inverter, computing
KPIs such as the power of the inverter and the THD of the
current, storing the raw signals in a database, and displaying
the KPIs on a dashboard. These tasks have different con-
straints on their speed and run with different sampling rate.
For example, the signals may be captured and stored at a
sampling rate of 20KHz but down-sampled to 10KHz for
power and THD calculation, and the KPIs are displayed at
60Hz. To reduce latency, some tasks such as data capturing,
storage, and display should be implemented asynchronously.
However, there cannot be glitches for tasks such as inverter
power, which must multiple the voltage and current sam-
pled at the same time. Moreover, if the network and system
load increases, some of the tasks may slow down, which can
cause latency, memory leak or data loss. To deal with this,
each task can update its sampling rate to maintain its speed,
which means that some tasks need to re-sample their input.

1.2 Functional Reactive Programming
A reactive programming model is a natural choice to pro-
cess signals and allow for dynamic reactions to data. Re-
active programming is a broad area of study ranging from
pull-based FRP (e.g. Fran [9], Yampa [6], monadic stream
functions [1, 19], FRP Now [21]), to push-based designs (e.g.
Reactive Extensions [16], FrTime [5], Flapjax [15], Scala Re-
act [14], Elm [7], Monadic FRP [23]), to hybrid model (e.g.
push-pull FRP [8]). However, none of the existing models

has the ideal characteristics that are specialized for IoT data
that can scale sampling rates to its environment.
The core concepts of FRP [9] are behaviors and events,

where a behavior is a continuous time function that can
switch on events. In the existing FRP designs, the events and
the behaviors have the same time domain. However, in IoT
applications, the time parameter of IoT data analysis is the
data time (i.e. when the data is sampled at the remote sensors,
which may be in the arbitrary past if it is historical data), not
the system time when the network events containing the IoT
samples are received by the IoT programs.
The push-based models [7, 14, 15] use separate mecha-

nisms such as signal graph to prevent harmful glitches by
ensuring global ordering of events. While this works well
for applications such as graphic interface, it is not suitable
for IoT data. For example, the current and voltage data in
Figure 1 should match their sampling time but the network
events containing the data do not need to be globally ordered.
Some pull-based models [1, 21] use scheduler or type-level
clocks to combine asynchronous events and synchronous
data at different sampling rate. However, they do not distin-
guish event time from the behavior time, which is necessary
for adjusting sampling rate of the data in response to the
changes in network and system load.

1.3 Proposed solution
Our solution is based on the observation that separate stages
of IoT computation can be implemented by either push or
pull models, which can be connected by simple mechanisms
like buffering and timeout loops (or clocks). We define push-
based streams for handling system events. The push-streams
can be converted to pull-based streams through buffering.
We then use those pull-streams for pure computations such
as KPI calculations. The pull-streams are driven by clocks to
form push-streams for asynchronous computation related to
storage, display, and user interface.
With this design, the push-streams do not need to main-

tain global ordering of the asynchronous events since any
synchronous computation that they are part of is driven by
the same clock that pulls data from buffers, which ensures
their ordering. The pull-streams do not interact with asyn-
chronous IO directly since they only pull data from buffers.
Figure 2 illustrates a push-pull implementation of the

workflow in Figure 1. The voltage (current) data is captured
from the voltage (current) sensor using a push stream, which
sends a stream of requests to capture the data and then emits
the responses in the order in which the requests are sent. The
stream sends data requests asynchronously to reduce latency
and can adjust the sampling rate of the requested data to sus-
tain its speed. The push streams are converted to pull streams
(i.e. behaviors) through a buffering and a stepper function
and the pull streams are used to compute power KPI. The
conversion to pull-streams is to ensure that the voltage and
current data can be synchronized and to allow re-sampling

2

Asynchronous Monad for Reactive IoT Programming REBLS ’20, November 16, 2020, Virtual, USA

Figure 2. A use case of the push-pull model, where the solid lines represent push computation or push/pull conversion, the
dashed lines represent pull computation, and the dotted lines represent dynamic adjustment to the push-streams.

since the sampling rate of the push streams may change over
time. The current data is also used to compute the THD of
the current. The THD calculation includes Fourier transform
on a sliding window of the current, which is computationally
intensive and may need to increase the stride of the sliding
window to maintain real-time speed. Since the current data
for THD and power is pulled independently, the push stream
for current is multicast into two push-streams before con-
verting to pull streams. The power and THD of current are
paired together and sent to display but since the display is
asynchronous, the power and THD behavior is converted to
a push stream first with a reactimate function that samples
the data around 60Hz. Similar method can be used to save
the data to a storage (the details are omitted).

1.4 Contributions
Our design for push-stream is adapted from the Reactive
Value abstraction proposed in push-pull FRP [8]. A reactive
value is a value followed by another reactive value that oc-
curs in the future. Reactive values are composable through
a monadic interface. Joining higher-order reactive values
requires racing two future reactive values. The original pro-
posal was to use Haskell’s threads. However, many IoT ap-
plications are implemented in dynamic languages that use
event loops for concurrency. Also, our push streams can be
shared through multicast or be converted to pull streams
through buffering. This creates multiple streams with inde-
pendent controls. A stream may continue to run even if its
results are no longer used, which can cause memory leak.
Thus, our first contribution is a design of a reactive

stream that represents future values using AsyncM, which is
a form of continuation monad that implicitly carries a list
of cancellation tokens. This design is lightweight and works
with event loops or threads. Using AsyncM, we can race or

cancel future values. If we cancel an AsyncM value, then any
nested AsyncM values are cancelled as well, which is crucial
for the dynamic switching of push-pull streams.
The second contribution is a hybrid push-pull design

that supports high-throughput real-time data processing.
The push-streams can make independent adjustment to their
computation parameters to maintain real-time data speed.
The pure functions on data can be implemented as synchro-
nous computation on pull-streams.
For the rest of the paper, we first introduce the design

of a cancellable continuation monad in Section 2, which is
the foundation for our hybrid push-pull model. In Section 3,
we describe the monadic interface of our push-based stream
and how it can be used to process IoT data in real-time. In
Section 4, we show how pull-based signals/behaviors can be
derived from push-streams, how to run signals/behaviors as
push streams, how to run computations with independently
adjusted sampling rates. We discuss implementation and
performance in Section 5 and related work in Section 6. The
implementation is at https://github.com/tianzhao/asyncm.

2 Cancellable Continuation Monad
To implement an asynchronous and reactive model, we need
an abstraction to represent asynchronous computation. The
abstraction should not depend on threads so that it can be
implemented in a single-threaded language like JavaScript.
The abstraction should also support cancellation semantics
so that a reactive stream can run independently, be shareable,
and be stopped when it is no longer needed.

Our design is a continuation monad called AsyncM, which
supports collaborative cancellation. Each AsyncM m runs
with a progress value p so that if p is cancelled, m will stop
at a checkpoint where it checks the cancellation status of

3

https://github.com/tianzhao/asyncm

REBLS ’20, November 16, 2020, Virtual, USA Tian Zhao, Adam Berger, and Yonglun Li

p. The cancellation semantics is modular as AsyncM is com-
posed with monadic bind and the progress value is threaded
through the bind operator.

AsyncM is defined in Listing 1, which is a function that
takes a Progress value and a continuation callback k, and
passes its asynchronous result to k. A Progress value is a
list of cancellation tokens, each of which has the “MVar ()”
type, which either is empty (meaning alive) or has the unit
value () (meaning cancelled).
type AsyncM a = Progress -> (a -> IO ()) -> IO ()

type Progress = [MVar ()]

Listing 1. The definition of AsyncM

AsyncM is an instance of Functor, Monad, and MonadIO
(where an IO action can be lifted to an AsyncM using liftIO)
since it can be defined with monad transformers as follows.
newtype AsyncM a = AsyncM {

runAsyncM :: ReaderT Progress (ContT () IO) a

} deriving (Functor , Applicative , Monad , MonadIO)

We can run an AsyncM for its side effect by calling it with
an empty continuation.
-- run an AsyncM for its side effect

runM :: AsyncM a -> IO ()

runM m = m [] (_ -> return ())

For example, the download function defined below down-
loads an HTTP document and saves it to a file, but if the
download is not completed in 2 seconds, the downloaded
document is not saved.
download :: String -> Path -> AsyncM ()

download url path = do r <- anyM (http url) (timeout 2000)

case r of Left str -> save path str

Right _ -> return ()

timeout :: Int -> AsyncM ()

timeout n = \p k -> do async (threadDelay (n*10^3) >>= k)

return ()

http :: String -> AsyncM ByteString

http url = \p k -> do async (simpleHttp url >>= k)

return ()

save :: Path -> ByteString -> AsyncM ()

save path str = \p k -> writeFile path str >> k ()

The functions for racing and canceling AsyncMs are de-
fined in Listing 2. Racing m1 and m2 is just to run them in
parallel with a new progress value, where m1 and m2 should
check whether the progress is still alive (with aliveM) and
cancel it (with cancelM) before completion; otherwise the
continuation k may be called twice.
anyM :: AsyncM a -> AsyncM b -> AsyncM (Either a b)

anyM m1 m2 = raceM (do x1 <- m1

commitM

return (Left x1))

(do x2 <- m2

commitM

return (Right x2))

commitM = ifAliveM >> cancelM

raceM :: AsyncM a -> AsyncM a -> AsyncM a

raceM m1 m2 = \p k -> do p' <- consP p

m1 p' k

m2 p' k

ifAliveM :: AsyncM ()

ifAliveM = \p k -> do b <- isAliveP p

if b then k () else return ()

cancelM :: AsyncM ()

cancelM = \p k -> do b <- cancelP p

if b then k () else return ()

Listing 2. Concurrency control with AsyncM.

The functions for Progress values are in Listing 3. To
cancel a Progress value, we put () in the head token, and to
test whether a progress is alive, we check all of that value’s
cancellation tokens so an AsyncM can be cancelled in any
context.

-- extend the progress p with a new cancellation token

consP :: Progress -> IO Progress

consP p = (:p) <$> newEmptyMVar

-- test whether a progress is cancelled

isAliveP [] = return True

isAliveP (v:p) =

do b <- isEmptyMVar v

if b then isAliveP p else return False

-- try cancel a progress and return true if succeeds

cancelP :: Progress -> IO Bool

cancelP (v:_) = tryPutMVar v ()

Listing 3. Make, test, or cancel a progress value.

As another example, download' attempts to download a
document from a list of alternative URLs and if any download
completes in 2 seconds, it is saved, and the program exits.
Otherwise, the next URL in the list is tried.

download ' :: [String] -> Path -> AsyncM ()

download ' [] _ = return ()

download ' (url:rest) path =

do r <- anyM (http url) (timeout 2000)

case r of Left str -> save path str

Right _ -> download ' rest path

Since download' contains the checkpoint isAliveM, we
can stop the entire download process (e.g. after 5 seconds)
as follows.

download '' :: [String] -> Path -> AsyncM ()

download '' lst path =

anyM (download ' lst path) (timeout 5000)

Note that for a finitely nested anyM, the cost of ifAliveM is
not significant compared to the IO within the anyM. However,
if a function is called recursively within an anyM, the size of
the progress grows with each recursive call and the cost of
ifAliveM increases correspondingly. To avoid performance
issues, long-running recursive calls should occur outside of
anyM (e.g. the push-stream’s monadic join in Section 3.2).

4

Asynchronous Monad for Reactive IoT Programming REBLS ’20, November 16, 2020, Virtual, USA

3 Push-based Reactive Stream
In many classic FRP implementations [8, 9], a behavior is a
function from time to value, and an event source is a list of
time/value pairs. A behavior can switch to new behaviors by
reacting to the occurrence of events using a switch operator.
Classic FRP samples the behavior values and detects event
occurrences synchronously. However, IoT sensors are often
distributed and synchronous sampling of sensor telemetries
can cause unacceptable delay due to network latency. In
addition, the overhead of synchronous sampling is unsuitable
for high-frequency data such as the electrical signals that
may be sampled at 10KHz or more. Thus, an asynchronous
implementation is necessary for reactive IoT computations.

We adopt a push-based design for representing the stream
of discrete events (similar to the Reactive value of push-
pull FRP [8]). A value of the type “Stream a” contains a
“Maybe a” value and a future stream “AsyncM (Stream a)”.
-- the reactive stream

data Stream a = Next (Maybe a) (AStream a)

-- the future reactive stream

type AStream a = AsyncM (Stream a)

The Maybe type is used for stream values because not all
streams in IoT applications have sensible initial values when
started. For example, if we set the initial value of a voltage
stream to 0, there could be a KPI calculation which divides
some signal by the voltage – producing a division by zero.
In this case, Nothing should be the initial value, which will
be skipped in KPI calculation.
-- a stream that starts with Nothing

repeatS :: AsyncM a -> Stream a

repeatS m = Nothing `Next ` repeatA m

-- an asynchronous stream by repeating m

repeatA :: AsyncM a -> AStream a

repeatA m = do a <- m

ifAliveM -- cancellation checkpoint

return (Just a `Next ` repeatA m)

Listing 4. Make a stream by running an AsyncM repeatedly.

We can make a stream with repeatS m (Listing 4) that waits
for the value of m, checks the progress status, and then
repeats itself. For instance, repeatS (timeout 1000) is a
stream of 1 second intervals.

For the rest of the paper, we assume there exists a function
getData that captures sensor data by a sampling period in
seconds and a duration in milliseconds.
getData :: String -- name of the sensor

-> Int -- capturing time in milliseconds

-> Double -- sampling period in seconds

-> AsyncM [Double] -- resulting data batch

For example, repeatS (getData "Va" 1000 0.0002) is
a stream of data batches, where each batch contains 1000
milliseconds of voltage data with a sampling period of 0.0002
seconds (or 5000 Hz). Streams like this can capture data from
multiple sensors without accumulative delay.

A stream can be run with runS that sends the stream
events to a function k which has side effects (e.g. saving
data), where the Nothing events are skipped.
runS :: Stream a -- stream to run

-> (a -> IO ()) -- side -effecting function

-> AsyncM () -- resulting computation

runS (a `Next ` ms) k =

do ifAliveM -- cancellation checkpoint

liftIO (f a) -- run 'k' with event 'a'

s <- ms

runS s k

where -- no effect for the Nothing event

f Nothing = return ()

f (Just x) = k x

Listing 5. Run a stream with a callback function.

3.1 Functor
Stream is a functor, where its fmapmethod (<$>) recursively
applies f to the stream events. Since a is a Maybe value,
“f <$> a” is Nothing if a is Nothing and is “Just (f x)” if
a is “Just x”.
instance Functor Stream where

fmap f (a `Next ` ms) = (f <$> a) `Next ` (fmap f <$> ms)

For example, the code below calculates the KPI of a sensor
signal, saves it to a database, and at the same time, displays it
on a user interface. The function kpi calculates a KPI value
for every second of sensor samples, and forkM starts an
AsyncM without waiting for it to complete.
let s = kpi <$> repeatS (getData "Va" 1000 0.0002)

in do forkM (runS s writeDB)

forkM (runS s display)

-- run m with a new progress p' and return p' immediately

forkM :: Async a -> Async Progress

forkM m = \p k -> do -- p' extends p with a new token

p' <- consP

-- discard the result of m

m p' (_ -> return ())

k p' -- return p' right away

Listing 6. Run an AsyncM and return its progress value.

However, this example has a flaw since it captures sensor
data and computes its KPI twice. A better version below
avoids recomputing the stream s by broadcasting its values
to an Emitter e, and then events from e are received by two
separate streams for saving to a database and displaying.
let s = kpi <$> repeatS (getData "Va" 1000 0.0002)

in do (e, _) <- broadcast s

let s' = receive e

forkM (runS s' writeDB)

forkM (runS s' display)

The call “broadcast s” creates a new emitter e, emits
each value of s to e, and returns e, whose values are received
by the stream “receive e”. Since we use runS to broadcast
the stream s, the Nothing events in s are skipped.
-- broadcast the events of a stream to an emitter

broadcast :: Stream a -> AsyncM (Emitter a, Progress)

broadcast s = do e <- liftIO newEmitter

5

REBLS ’20, November 16, 2020, Virtual, USA Tian Zhao, Adam Berger, and Yonglun Li

-- keep emitting events of s to e

p <- forkM (runS s (emit e))

-- return progress for cancellation

return (e, p)

receive :: Emitter a -> Stream a

receive e = Nothing `Next ` h

where h = do a <- listen e -- listen for event on e

ifAliveM -- cancel checkpoint

return (Just a `Next ` h)

Listing 7. Broadcast a stream to an emitter to enable sharing.

Both broadcast and receive can be cancelled since both
contain the checkpoint isAliveM (where the checkpoint
of broadcast is in runS). In addition, broadcast can be
cancelled explicitly through the Progress value it returns.
The function listen takes an emitter e and returns an

AsyncM that yields the future value of e by registering a
callback on e. The call “emit e a” writes a to e, fires any
callbacks registered on e, and then clears the callback list.
data Emitter a = Emitter (MVar a) -- the previous event

(MVar [a -> IO ()]) -- callbacks

newEmitter = pure Emitter <*> newEmptyMVar <*> newMVar []

-- listen for an event on an emitter

listen :: Emitter a -> AsyncM a

listen (Emitter _ kv) =

-- add 'k' to the callback list of the emitter

_ k -> modifyMVar_ kv (\lst -> return (k : lst))

-- emit an event 'a' to the emitter

emit :: Emitter a -> a -> IO ()

emit (Emitter av kv) a = do
tryTakeMVar av -- clear previous event

putMVar av a -- set current event

lst <- swapMVar kv [] -- clear callback list

forM_ lst (\k -> k a) -- fire registered callbacks

Listing 8. Create, listen, or emit an event to an emitter.

3.2 Monad
Stream has a monad interface defined in Listing 9, where
‘return x’ is a stream with just x followed by neverM, which
is an AsyncM that never completes. The bind operator >>= is
defined with a join function that flattens a stream of stream.
instance Monad Stream where

-- neverM is an AsyncM that never completes

return x = Just x `Next ` neverM

-- join the Stream of Stream 'fmap k s'

s >>= k = join (fmap k s)

join :: Stream (Stream a) -> Stream a

join (Nothing `Next ` mss) = Nothing `Next ` (join <$> mss)

join (Just s `Next ` mss) = switch s mss

Listing 9.Monad interface of reactive stream

The join function has two cases. In the first case, the inner
stream is Nothing and we skip it, and continue to join the
future outer stream. In the second case, we use the switch
function in Listing 10 to run the inner stream s until the
future outer stream mss emits.

1 switch :: Stream a -> AStream (Stream a) -> Stream a

2 switch (a `Next ` ms) mss = a `Next ` (h ms =<< spawnM mss)

3 where h ms mss =

4 let
5 f (Left ss) = join ss

6 f (Right (a `Next ` ms ')) = a `Next ` h ms ' mss

7 in
8 f <$> anyM mss (unscopeM ms)

Listing 10. Switch the inner stream when the future outer
stream emits.

The switch function races the future inner stream ms with
the future outer stream mss (line 8) using anyM. If mss wins
the race with a new outer stream ss, then we abandon ms
and continue with “join ss” (line 5). If ms wins the race
with an event a, then a is emitted and we continue the race
of the next future inner stream ms' with mss (line 6).
The switch function calls the local function h (defined

at line 3) to perform the race. If ms wins the race, the call
reduces to “h ms' mss” (line 6), where ms' is the next future
inner stream. Notice that mss is reused in the recursion,
which is problematic for two reasons. First, mssmay contain
an asynchronous request (e.g. a timeout) that returns after
the response is received. In this case, each run of mss will
start a new request with a new completion time. Second, mss
may be a composite AsyncM (e.g. another race), so restarting
it wastes runtime. Therefore, when switch starts, it runs
“h ms =<< spawnM mss” at line 2 to cache the result of mss
using “spawnM mss”, which starts mss and returns an AsyncM
that waits for the result of mss.

We race ms and mss in “anyM mss (unscopeM ms)” (line
8), where unscopeM runs ms with the progress outside anyM.
This is needed since anyM cancels its progress (and any
AsyncM running with the progress) once the race completes
but there may be a pending AsyncM started inside ms (e.g.
using spawnM) that has not completed when mswins the race.

1 neverM :: AsyncM a -- never complete by not calling 'k'

2 neverM = \p k -> return ()

3
4 -- avoid cancelling 'm' inside a race

5 unscopeM :: AsyncM a -> AsyncM a

6 unscopeM m = \p k -> m (tail p) k

7
8 -- start m and return an AsyncM waiting for m's result

9 spawnM :: AsyncM a -> AsyncM (AsyncM a)

10 spawnM m = \p k -> do e <- newEmitter

11 m p (emit e)

12 k (wait e)

13
14 -- try reading a future event from the emitter and

15 -- register a callback if the event is not available

16 wait :: Emitter a -> AsyncM a

17 wait (Emitter av kv) = \p k ->

18 do a <- tryReadMVar av

19 case a of Just x -> k x

20 Nothing -> swapMVar kv [k]

Listing 11. Auxiliary functions to run AsyncM.

The function spawnM in Listing 11 starts an AsyncM with
a callback that writes its result to an emitter e at line 11, and
then returns “wait e” at line 12 to wait for the result. To

6

Asynchronous Monad for Reactive IoT Programming REBLS ’20, November 16, 2020, Virtual, USA

avoid memory leaks, “wait e” only keeps one callback in
e (using swapMVar at line 19) since wait e (returned from
spawnM) can be started many times, but only the last instance
is needed.

Use of Monad Interface. Our monadic interface is con-
venient for switching. For example, we can define a stream
below that displays the KPI of a sensor chosen by users,
where sensorSource is an AsyncM that waits on user input
to choose the sensor for KPI calculation.
let s = do src <- repeatS sensorSource

repeatS (getData src 1000 0.0002)

in runS (kpi <$> s) display

Using switch, we can define functions such as stopS that
stops a stream after n milliseconds.
stopS n s = s `switch ` do timeout n

return (Nothing `Next ` neverM)

3.3 Buffered Stream
There is usually some latency between capturing IoT sensor
data and the KPI calculation. For example, it may take 2
seconds to run “getData "Va" 1000 0.0002” to retrieve 1
second of samples (with 1 second of network delay). If we
only send a request after receiving the response from the
previous request, then the samples between two successive
requests will be lost. We may be able to hide this latency
using a queue and two streams: the first stream sends the
requests at a regular interval and pushes the future response
for each request to the front of the queue. The second stream
extracts the future response from the end of the queue and
waits for it to resolve. If the latency is not due to the lack of
network bandwidth, it may be able to be hidden this way.

The example below creates a request stream at line 3 that
sends a data request every second. Another stream response
at line 5 is created using the fetchS function (Listing 12).
1 let clock = repeatS (timeout 1000)

2 -- request :: Stream (AsyncM [Double])

3 request = getData "Va" 1000 0.0002 <$ clock

4 -- response :: Stream [Double]

5 response = fetchS request

6 in runS (fmap kpi response) display

The fetchS function in Listing 12 spawns an AsyncM for
each request in the request stream, and writes it to a chan-
nel (line 3). It returns a new stream (line 6) that reads each
AsyncM from the channel and waits for it to yield a result.
The workflow of fetchS is shown in Figure 3.
1 -- take a request stream and return a response stream

2 fetchS :: Stream (AsyncM a) -> Stream a

3 fetchS sm = Nothing `Next ` do
4 c <- liftIO newChan

5 forkM $ runS (sm >>= liftS . spawnM) (writeChan c)

6 repeatA $ join $ liftIO (readChan c)

7
8 -- lift an AsyncM to a Stream

9 liftS :: AsyncM a -> Stream a

10 liftS m = Nothing `Next ` (m >>= return . return)

Listing 12. Fetch data by sending requests in a stream.

Figure 3. Illustration of the workflow of fetchS.

In Listing 12, the expression “sm >>= liftS . spawnM” at
line 5 converts the stream of requests sm to a stream of future
responses using spawnM. At line 6, “liftIO (readChan c)”
has the type AsyncM (AsyncM [Double]), which is flattened
by join to AsyncM [Double] that reads a response from the
channel and waits for it to complete.

3.4 Real-time Push Stream
The fetchS function can help reduce the latency and in-
crease the throughput of IoT data retrieval. However, the
data retrieval throughput is also subject to limitations such as
network bandwidth. For the previous example, if the amount
of data being transmitted exceeds the network bandwidth,
then the latency between IoT data capturing and KPI calcu-
lation will gradually increase, and the KPI calculation will
no longer be in real-time. One way to prevent this problem
is to monitor the speed of the response stream and if it is
lower than the speed of the request stream, then we reduce
the amount of data for each request (e.g. by lowering the
sensor sampling rate).

To measure the speed of the response stream, we can use
the countS function in Listing 13 to count the events of a
stream during a time interval. The countS function is based
on foldS, which folds a stream of functions for a duration,
and returns the last event.
-- count the number of events of s in n milliseconds

countS :: Int -> Stream a -> AsyncM Int

countS n s = foldS n 0 ((+1) <$ s)

-- fold s for n milliseconds with the initial value c

foldS :: Int -> a -> Stream (a -> a) -> AsyncM a

foldS n c s = do r <- lastS (accumulate c s) (timeout n)

return $ fromJust r

Listing 13. Count the events of a stream in a period of time.

The function foldS calls accumulate (Listing 14) to re-
cursively apply a stream of functions to an initial value,
then uses lastS to stop the accumulation and returns the
last value. Note that countS does not include Nothing since
accumulate emits the same value if f is Nothing.
-- accumulate s with the initial value a

accumulate :: a -> Stream (a -> a) -> Stream a

accumulate a (f `Next ` ms) =

let a' = maybe a ($ a) f

in Just a' `Next ` (accumulate a' <$> ms)

7

REBLS ’20, November 16, 2020, Virtual, USA Tian Zhao, Adam Berger, and Yonglun Li

-- return the last event of s when m returns

lastS :: Stream a -> AsyncM () -> AsyncM (Maybe a)

lastS s m = spawnM m >>= h s

where h (a `Next ` ms) m = do
r <- anyM ms m

case r of Left s -> h s m

Right () -> return a

Listing 14. Accumulate a stream and take a snapshot.

Using countS, we can implement a stream that makes
runtime adjustments to sustain its speed. For example, the
getBatch function in Listing 15 returns a stream of sample
batches from a data source, where the sampling rate is ad-
justed based on the request/response speed. The function
req_fun (line 4) takes the sampling-period dt and returns a
request stream for 1 second of data sampled at 1/dt Hz. The
call to controlS at line 6 compares the number of requests
sent and responses received within 10 seconds and adjusts
dt by a ratio of 1.1 if the numbers are not equal.
1 getBatch :: String -> Stream (Double , [Double])

2 getBatch src =

3 let clock = repeatS (timeout 1000)

4 req_fun dt = getData src 1000 dt <$ clock

5 adjust b dt = if b then dt*1.1 else dt/1.1

6 in controlS req_fun (10^4) 0.0002 adjust

Listing 15. A data stream with adjustable sampling period.

The function controlS (Listing 16) takes a request func-
tion req_fun, a duration, a request parameter dt, an ad-
justment function, and outputs a response stream that can
self-adjust based on the relative request/response speed. The
controlS function builds a stream of stream at line 23 with
a response stream that runs until a new stream is emitted
from mss (when the speed of request and response differs).
The nested stream is joined at line 6, and the request param-
eter dt is added to the response stream at line 23. The basic
workflow of controlS is shown in Figure 4.
1 controlS :: (t -> Stream (AsyncM a)) -- request function

2 -> Int -- duration (in ms)

3 -> t -- request parameter

4 -> (Bool -> t -> t) -- adjust function

5 -> Stream (t, a) -- result stream

6
7 controlS req_fun duration dt adjust = join $ h dt

8 where h dt = do
9 -- multicast creates shareable streams

10 (request , p1) <- multicast $ req_fun dt

11 (response , p2) <- multicast $ fetchS request

12
13 let mss = do -- account for initial latency

14 timeout duration

15 -- measure request/response speed

16 (x, y) <- allM (countS duration response)

17 (countS duration request)

18 if x == y then mss

19 else do -- cancel multicast streams

20 liftIO (cancelP p1 >> cancelP p2)

21 -- restart adjusted stream

22 return $ h $ adjust (x < y) dt

23 -- make a stream of response stream

24 Just ((,) dt <$> response) `Next ` mss

25
26 -- run two AsyncMs and wait for both to return

Figure 4. Illustration of the workflow of controlS.

27 allM :: AsyncM a -> AsyncM b -> AsyncM (a, b)

Listing 16. Make a request stream that can adjust to the
speed of the response.

The controlS function uses the multicast function in
Listing 17 to make shareable streams such as request and
response. However, the multicast streams will keep running
even if they are not used. To avoid redundant computation,
we cancel them by cancelling their Progress values at line
19 (Listing 16) when the stream switching occurs.
multicast :: Stream a -> Stream (Stream a, Progress)

multicast s =

Nothing `Next ` do (e, p) <- broadcast s

return $ return (receive e, p)

Listing 17. Make a shareable and cancellable stream.

4 Pull-based Data Stream
While IoT data is often captured, stored, and displayed asyn-
chronously, it is more convenient to analyze IoT data (e.g.
calculating KPI) synchronously. For example, suppose we
capture the voltage and current of an inverter in two push
streams, whose data arrive in the following order.
Time 0 1 2 3 4 5

voltage V1 v2 V3

current I1 I2 I3

If we use the monad interface of Stream to compute the
inverter power, we will produce incorrect output below.
Time 0 1 2 3 4 5

power V1*I1 V2*I1 V2*I2 V3*I2 V3*I3

Since the voltage and current of the same data time may
arrive at different system times, we have to match the voltage
and current events by their sampling timestamps, which
is costly. But, if the two streams are buffered, they can be
processed synchronously by pulling their events from the
respective buffers to yield the correct output.
Time 0 1 2 3 4 5

power V1*I1 V2*I2 V3*I3

For this purpose, we define the Signal type in Listing 18,
which is a recursive data structure that provides discrete
data events on demand. Signal is an Applicative Functor,
where the app operation gf <*> ga is defined as pairwise
applications of the function signal gf to argument signal ga.

8

Asynchronous Monad for Reactive IoT Programming REBLS ’20, November 16, 2020, Virtual, USA

-- Pull -based stream

newtype Signal m a = Signal {runSignal :: m (a, Signal a)}

instance (Monad m) => Functor (Signal m) where
fmap f g = Signal $ do (a, g') <- runSignal g

return (f a, fmap f g')

instance (Monad m) => Applicative (Signal m) where
pure a = Signal $ return (a, pure a)

gf <*> gx = do (f, gf ') <- runSignal gf

(x, gx ') <- runSignal gx

return (f x, gf ' <*> gx ')

Listing 18. The definition of pull-based Signal stream.

4.1 Push Pull Conversion
The function push2pull (Listing 19) converts a push-stream
s to a pull-signal by sending the events of s to a channel
buffer and returning a signal that reads from the channel.
We run a signal using the reactimate function that returns
a Stream that emits the signal values with a fixed delay.
push2pull :: Stream a -> AsyncM (Signal IO a)

push2pull s = do
-- make an event buffer

c <- liftIO newChan

-- write events of 's' to the buffer

forkM $ runS s $ writeChan c

-- read events from the buffer

let g = Signal $ do a <- readChan c

return (a, g)

return g

-- run signal with event delay

reactimate :: Int -> Signal IO a -> Stream a

reactimate delay g = Nothing `Next ` h g

where h g = do timeout delay

ifAliveM

(a, g') <- liftIO $ runSignal g

return $ Just a `Next ` h g'

Listing 19. Conversion between Stream and Signal.

It is more convenient to calculate KPI with Signals. For
example, the function power below computes the power of an
inverter and returns the results in a stream of batches. Each
event in “power 1000 0.0002” is a batch of 5000 samples
since the sampling period is 0.0002 seconds, and each batch
contains 1000 milliseconds of data.
power :: Int -> Double -> Stream [Double]

power duration dt = do
clock <- multicast $ repeatS (timeout duration)

-- a stream of requests for a given source

let req src = getData src duration dt <$ clock

-- convert a request stream to a signal

let req2signal s = liftS (push2pull (fetchS s))

voltage <- req2signal (req "Va") -- Signal IO [Double]

current <- req2signal (req "Ia") -- Signal IO [Double]

let power = pure (zipWith (*)) <*> voltage <*> current

reactimate 1 power -- run Signal as a push stream

Signal of data batches is not suitable for computation that
needs to change sampling rate or operate on a moving win-
dow of data samples. We can create the voltage (and current)
streams by calling fetchS on a stream of data requests that
capture 1 sample per request. However, this is inefficient
due to the overhead of sampling and transmission. A more
realistic solution is to fetch data as a signal of batches and
then convert the batch signal into sample signal.

In Section 3.3, we gave an example of a stream of voltage
batches with varying sampling rate to match the speed of
request and response. This creates a problem when we have
a stream of voltages and a stream of currents with possibly
different sampling rates. We need to re-sample the data be-
fore inverter power can be calculated, which requires the
sampling period be included in the signal events. Moreover,
KPIs such as THD (which can measure the quality of an in-
verter signal) take the sampling period as input. For these
reasons, we need to have signals with time.

4.2 Event
Event is a signal of sampling-period and value pairs. Since
the sensor signal converted from a request stream may have
varying sampling rate, the sampling period should be in-
cluded in the signal, which forms a sequence of delta-time
and value pairs.
type DTime = Double -- sampling period

-- Event is a signal of sampling -period and value pairs

type Event a = Signal IO (DTime , a)

IoT data can be retrieved as an Event with a given sam-
pling period using the function fetchE in Listing 20, which
uses fetchS to retrieve a stream of the responses to the re-
quests sent with a sampling period dt, and then pairs the
results with dt.
-- fetch Event Signal

fetchE :: (DTime -> Stream (AsyncM a)) -- request stream

-> DTime -- sampling period

-> AsyncM (Event a) -- event signal

fetchE req_fun dt =

push2pull $ (,) dt <$> fetchS (req_fun dt)

Listing 20. Convert a request Stream to an Event.

An Event of batches can be easily converted to an Event
of samples using the unbatch function in Listing 21, where
the sampling period of a batch is repeated in the unbatched
samples. When the sampling period of a batch changes, the
corresponding sampling period of the unbatched samples
changes as well.
-- flatten the Event of batches to an Event of samples

unbatch :: Event [a] -> Event a

unbatch eb = Signal $ do
((dt, b), eb ') <- runSignal eb

h dt b eb '

where h _ [] eb ' = runSignal $ unbatch eb '

h dt (a:b) eb ' =

return ((dt, a), Signal $ h dt b eb ')

Listing 21. Convert batch Event to sample Event.
9

REBLS ’20, November 16, 2020, Virtual, USA Tian Zhao, Adam Berger, and Yonglun Li

An event of samples is not only easier for KPI calculations,
but also allows re-sampling so that IoT data of varying sam-
pling rate can be used in a computation with a constant
sampling rate through re-sampling.

4.3 Behavior
To support re-sampling, below we define the Behavior type
as a signal that takes a sampling-period as input. Each value
of the behavior is the summary of some sample values over
a given sampling period.
type Behavior a = Signal (ReaderT DTime IO) a

stepper :: ([(DTime , a)] -> a) -- summary function

-> Event a -- input Event

-> Behavior a -- output Behavior

stepper sum ev = Signal $ ReaderT $ \t -> h [] t ev

where h lst t ev = do
((t', a), ev ') <- runSignal ev

if (t == t')

then return (sum ((t,a):lst), stepper sum ev ')

else if (t < t')

then return (sum ((t,a):lst), stepper sum

$ Signal $ return ((t'-t, a), ev '))

else h ((t',a):lst) (t-t') ev'

A stepper function can be defined to convert an Event to
a Behaviorwith the help of a summary function that summa-
rizes a sequence of time/value pairs to a value. The idea is to
repeat the sample value of the Event for up-sampling (when
the sampling period of the Behavior is shorter than that of the
Event), and use the summary function for down-sampling
(when the sampling period of the Behavior is longer). The
summary function depends on the IoT data, which may be
numeric values or discrete states.

Using the Behavior abstraction, we can calculate inverter
power using two streams with variable sampling rates. For
example, below is a code snippet that first obtains two self-
adjusting streams by calling getBatch (Listing 15) and then
converts the streams to behaviors using stream2behavior
(Listing 22). The workflow of computing inverter power is
shown in Figure 5, where getBatch produces voltage/cur-
rent batches Stream (DTime, [Double]), which are streams
of sampling period and data batch pairs.
do voltage <- stream2behavior (getBatch "Va")

current <- stream2behavior (getBatch "Ia")

let power = pure (*) <*> voltage <*> current

runS (reactimateB 1 0.001 power) display

The stream2behavior function goes through the steps
of converting a push-stream to an Event of batches, to an
Event of samples, and to a Behavior.
avg :: [(DTime , Double)] -> Double -- weighted average

stream2behavior :: Stream (DTime , [Double])

-> AsyncM (Behavior Double)

stream2behavior s =

(stepper avg . unbatch) <$> push2pull s

Listing 22. Convert a batch stream to a behavior

We run a behavior using the function reactimateB in
Listing 23, which turns a behavior to a push-stream given a
delay and sampling period.
reactimateB :: Int -- delay between pulls

-> DTime -- sampling period

-> Behavior a -- input behavior

-> Stream (DTime , a) -- output stream

reactimateB delay dt b = Next Nothing (h b)

where h b = do
timeout delay

ifAliveM

(a, b') <- liftIO $ (runReaderT $ runSignal g) dt

return $ Just (dt, a) `Next ` h b'

Listing 23. Run a behavior as a stream.

KPI calculations can be expensive. For example, calcu-
lating THD for dozens of electrical signals can overwhelm
some systems. To avoid this problem, we can measure the
data speed by adding up the sampling periods of the stream
reactimated from a behavior and divide it by the system
time used. If the ratio is less than 1 (or a number less than 1
considering runtime overhead), then it is operating at less
than real-time speed and computation load should be re-
duced. The speedS function in Listing 24 is for this purpose.
-- measure the total amount of sample time

-- within an given interval of system time

speedS :: Int -- duration in milliseconds

-> Stream (DTime , a) -- stream of time/value pairs

-> AsyncM Double -- relative data speed

speedS n s =

f <$> (foldS n 0.0 $ (\(dt,_) t -> t + dt) <$> s)

where f t = t * 1000.0 / fromIntegral n

Listing 24.Measure the data speed of a Behavior.

Note that the sampling-rate of a stream reactimated from
a behavior can be independent from the sampling-rate of the
streams that the behavior depends on. For example, suppose
that a stream of voltage samples is captured at 10KHz and
is saved to a database. If the behavior for KPI calculations
cannot run in real-time for this amount of data, then the
behavior can be reactimated at a lower sampling rate (e.g.
5Khz). The data can still be captured at 10KHz and be saved
to the database, but when the 10KHz stream is converted to
the behavior, it is down-sampled by the stepper function.
Additional operations such as up/down sampling can be

defined to support computation that operates at different
frequency. A window function (Listing 25) is especially useful
for IoT data since KPIs such as THD takes batches of samples
in order to calculate the harmonics of the electric signals.
The window function can generate data batches based on a
specific window size and stride (the number of samples to
skip between two consecutive batches).
-- convert a Behavior into an Event of data batches

window :: Int -- window size

-> Int -- stride

-> DTime -- sampling period

-> Behavior a -> Event [a]

10

Asynchronous Monad for Reactive IoT Programming REBLS ’20, November 16, 2020, Virtual, USA

Figure 5. Illustration of the workflow of computing inverter power.

-- up-sample a Behavior by a factor

upsample :: Int -- up-sample factor

-> Behavior a -> Behavior [a]

-- down -sample a Behavior by a factor

downsample :: Int -- down -sample factor

-> ([(DTime , a)] -> a) -- summary function

-> Behavior a -> Behavior a

Listing 25. Utility functions for Behavior

Assume we have a thd function that takes a sampling
period and a list of values and returns the THD value. The
thd_stream function below produces a stream of THD val-
ues from an inverter current behavior by calling the window
function to make batch input to the thd function.
thd :: DTime -> [Double] -> Double -- return THD value

thd_stream :: Int -> Int -> DTime

-> Behavior Double

-> Stream (DTime , Double)

thd_stream size stride dt behavior =

reactimate 1 $ f <$> window size stride dt behavior

where f (dt', w) = (dt ', thd dt w)

We can use speedS function to measure the data speed
of a stream and make runtime adjustment. The code below
computes the THD of inverter current by first creating a
stream of sliding windows of 5000 samples with the sampling
period of 0.0002 seconds (line 5). The stride of the sliding
window is 100, whichmeans that one THD value is computed
every 100 × 0.0002 = 0.2 seconds. Since larger stride means
less computation, we can adjust the stride (line 10) if the data
speed is outside the range of 0.9 to 1.1.
1 adjust :: Bool -> Int -> Int -- adjust the stride

2
3 do current <- stream2behavior (getBatch "Ia")

4 let f stride = do
5 stream <- thd_stream 5000 stride 0.0002 current

6 (s, p) <- multicast stream

7 let mss = do x <- speedS 1000 s -- measure speed

8 if 0.9 < x && x < 1.1 then mss

9 else do liftIO cancelP p

10 f $ adjust (x < 0.9) stride

11 Just s `Next ` mss

12 join $ f 100

5 Discussion
Our definition of Stream is similar to the monadic stream
MStream in [19]. In particular, AsyncM (Stream a) can be de-
fined as MStream AsyncM (Just a). However, the monadic
interface of Stream depends on AsyncM. Also, for better effi-
ciency, the Stream type in our implementation includes an

Figure 6. The peak memory use (MB) of the test programs
containing 2 to 128 push streams of 10KHz samples.

End case. This change avoids the need to race any AsyncM
with neverM even though the latter can never win a race.
data Stream a = Next (Maybe a) (AStream a)

| End (Maybe a)

instance Monad Stream where
-- return x = Just x `Next ` neverM

return x = End (Just x)

The definition of Signal is structurally identical to MStream.
We choose this name to mean sensor signal instead of the
FRP signal [6], which is a time to value function.

This design intends to work with high-frequency IoT data
(e.g. 5–20KHz) but our push streams are driven by clocks
of much lower frequency. IoT sensor data is often transmit-
ted in batches due to the limitation of the sensors and the
transmission links. Our design is to handle the batches of
high-frequency samples asynchronously (e.g. data capture,
storage, display) and to process the individual samples syn-
chronously (e.g. KPI calculation). The clocks that drive the
push streams may operate in the range of 1–100Hz.

Performance. To evaluate the overhead of our design, we
ran tests that use several push streams to emit 10KHz of nu-
meric data. The push streams are converted to behaviors,
which are combined into one behavior using Behavior’s
applicative interface and arithmetic operators. The final be-
havior is reactimated to a push-stream that prints the re-
sults. The tests primarily measure the memory overhead of
push/pull conversion, unbatching, and resampling. The peak
memory use of the tests is shown in Figure 6, where the
memory use is close to linear to the number of data streams.

11

REBLS ’20, November 16, 2020, Virtual, USA Tian Zhao, Adam Berger, and Yonglun Li

The tests were run with one physical thread on a Dell
laptop with Intel i7 processor (4 cores). We do not have
precise measurements of the runtime overhead but for 128
data streams, the CPU usage is about 4% and for 64 data
streams, it is about 2%.

6 Related Work
Push-Pull. Our work was influenced by push-pull FRP

[8], which was a modernization of Fran [9]. Push-pull FRP
models a behavior as a reactive time function, where a push-
event can cause a pull-based behavior to switch to another
one. Reactive is recursively defined as a value followed by
a future Reactive where the racing of future values is im-
plemented with threads. Our push-stream shares the same
structure as Reactive and its monadic interface. The differ-
ence is that we implement the future value using AsyncM.
Racing future values with AsyncM is lightweight, does not
involve threads so that it is suitable for dynamic languages
with event loops. Moreover, a stream is also run as an AsyncM,
which can be shared through multicast.

Variations of classic FRP. First-class behaviors can lead
to space-time leaks and wasteful re-computation. Jeltsch [10]
used phantom types to tie discrete push-signals to specific
start time to avoid restarting a signal after switching and
used memoization to avoid duplicated computation of sig-
nals. The paper’s motivation is related to stateful signals
such as the one that counts network traffic. Such a signal is
recomputed if used in multiple places and gets restarted after
switching. Our push-stream does not prevent this type of
issue through types. Instead, we can multicast a stream so
that multiple uses will not cause re-computation and switch-
ing will not cause restart. Krishnaswami [11] used a static
approach to ensure that past values cannot be accessed and
Patai [18] achieved similar goals by distinguishing streams
and streams of streams at the type level. FRP Now [21] pro-
vided a variation to Fran that does not cause space leaks and
also supports asynchronous IO. This approach erases past
values with an optimization based on mutable memory. It
handles asynchronous IO in a behavior by running the IO
on a new thread, which passes the results as an event to the
next round of the clock that runs the behavior.

Arrowized FRP. Another type of solution to the space-
time leak problem is to use the Arrows abstraction [13].
Yampa is an arrowized FRP variant which composes signal
functions using arrow combinators where signals are not
first-class values. A drawback of the arrowized approach
is that it requires inputs and outputs be threaded through-
out the entire program, and imposes a point-free style of
programming [6]. Scalable FRP [4] improved on Yampa by
providing an imperative implementation which has most
of the expressiveness of Yampa with better performance.
Arrowized FRP has been generalized into a monad stream

function in Ivan Perez’s Dunai [19], which can model FRP
signals and stateful reactive programming by stacking dif-
ferent monads. A later version called Rhine [1] introduced
type-level clocks for processing data at different rates, where
synchronous processes are run with an atomic clock on sig-
nal functions while asynchronous processes are run with
schedules on resampling buffers. Rhine statically checks for
correct composition involving clocks, and concurrent data
is processed by threads that pass results through channels.

Dataflow Languages. Before FRP, dataflow languages
(e.g. Lucid [24]) and synchronous dataflow languages (e.g.
Lustre [20] and SIGNAL [12]) provided an efficient and cor-
rect solution to real-time processing of signals. However,
they are limited in power, as their dataflow graphs are static,
and they do not support a form of first-class signals. In these
models, signals use implicit time based on the ordering of
events, rather than an explicit continuous time or discrete
time interval. Without switching operator, adjusting sample
rates to external factors is not possible with these languages.
Hiphop.js [3] is a dataflow programming language that builds
on the programming model of Esterel [2] and allows mixing
of synchronous and asynchronous programming. Hophop.js
focuses on Web orchestration with a declarative interface
while our design is on real-time data processing.

Distributed Reactive Programming. Distributed FRP
focuses on solving issues such as glitch-freedom, scalability,
and fault-tolerance that arise differently compared to non-
distributed systems. QPROP [17] is a propagation algorithm
designed for distributed systems. It works by exploring the
graph to find the dependency nodes before start propagation
and its variant supports dynamic graph changes. XFRP [22]
is a distributed FRP language based on actor model that com-
piles to Erlang. Though our model can interact with remote
data sources and sinks, it is not a distributed design.

7 Conclusion
In this paper, we presented a push-pull reactive program-
ming model for IoT data processing which uses asynchro-
nous streams for processing events and synchronous sig-
nals for processing data. Separating asynchronous streams
from synchronous signals allows our model to isolate side-
effecting computation which can run asynchronously such
as fetching batches of data via HTTP requests from the pure
synchronous computation of processing data.
Furthermore, we demonstrated how the model can be

used for real-time processing of high sampling-rate signals
while reacting to changes in processing speed by adjusting
the sampling rate. This dynamic switching is afforded by
the AsyncM monad, a continuation monad with implicitly
threaded cancellation tokens, which is the basis for our asyn-
chronous computations that allows for multi-threaded as
well as single-threaded event loop implementations.

12

Asynchronous Monad for Reactive IoT Programming REBLS ’20, November 16, 2020, Virtual, USA

References
[1] Manuel Bärenz and Ivan Perez. 2018. Rhine: FRP with Type-Level

Clocks. SIGPLAN Not. 53, 7 (Sept. 2018), 145–157. https://doi.org/10.
1145/3299711.3242757

[2] Gérard Berry. 1999. The Constructive Semantics of Pure Esterel. (1999).
[3] Gérard Berry and Manuel Serrano. 2020. HipHop. js:(A) Synchronous

reactive web programming.. In PLDI. 533–545.
[4] Guerric Chupin and Henrik Nilsson. 2019. Functional Reactive Pro-

gramming, restated. In Proceedings of the 21st International Symposium
on Principles and Practice of Programming Languages 2019. 1–14.

[5] Gregory H Cooper and Shriram Krishnamurthi. 2006. Embedding
dynamic dataflow in a call-by-value language. In European Symposium
on Programming. Springer, 294–308.

[6] Antony Courtney, Henrik Nilsson, and John Peterson. 2003. The yampa
arcade. In Proceedings of the 2003 ACM SIGPLAN workshop on Haskell.
7–18.

[7] Evan Czaplicki and Stephen Chong. 2013. Asynchronous Functional
Reactive Programming for GUIs. In Proceedings of the 34th ACM SIG-
PLAN Conference on Programming Language Design and Implementa-
tion. ACM Press, New York, NY, USA, 411–422.

[8] Conal Elliott. 2009. Push-pull functional reactive programming. In
Haskell Symposium. http://conal.net/papers/push-pull-frp

[9] Conal Elliott and Paul Hudak. 1997. Functional reactive animation. In
Proceedings of the second ACM SIGPLAN international conference on
Functional programming. 263–273.

[10] Wolfgang Jeltsch. 2009. Signals, Not Generators!. In Trends in Func-
tional Programming.

[11] Neelakantan R. Krishnaswami. 2013. Higher-Order Functional Reactive
Programming without Spacetime Leaks. SIGPLAN Not. 48, 9 (Sept.
2013), 221–232. https://doi.org/10.1145/2544174.2500588

[12] Paul LeGuernic, Thierry Gautier, Michel Le Borgne, and Claude
Le Maire. 1991. Programming real-time applications with SIGNAL.
Proc. IEEE 79, 9 (1991), 1321–1336.

[13] Hai Liu and Paul Hudak. 2007. Plugging a space leak with an arrow.
Electronic Notes in Theoretical Computer Science 193 (2007), 29–45.

[14] Ingo Maier and Martin Odersky. 2012. Deprecating the observer pattern
with Scala. react. Technical Report.

[15] Leo A Meyerovich, Arjun Guha, Jacob Baskin, Gregory H Cooper,
Michael Greenberg, Aleks Bromfield, and ShriramKrishnamurthi. 2009.
Flapjax: a programming language for Ajax applications. In Proceedings
of the 24th ACM SIGPLAN conference on Object oriented programming
systems languages and applications. 1–20.

[16] Microsoft. 2020. Reactive Extensions. http://reactivex.io/. Accessed:
2020-07-02.

[17] Florian Myter, Christophe Scholliers, and Wolfgang De Meuter. 2019.
Distributed reactive programming for reactive distributed systems.
arXiv (2019), arXiv–1902.

[18] Gergely Patai. 2011. Efficient and Compositional Higher-Order
Streams. In Functional and Constraint Logic Programming, Julio Mariño
(Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 137–154.

[19] Ivan Perez, Manuel Bärenz, and Henrik Nilsson. 2016. Functional
reactive programming, refactored. ACM SIGPLAN Notices 51, 12 (2016),
33–44.

[20] Daniel Pilaud, N Halbwachs, and JA Plaice. 1987. LUSTRE: A declara-
tive language for programming synchronous systems. In Proceedings
of the 14th Annual ACM Symposium on Principles of Programming
Languages (14th POPL 1987). ACM, New York, NY, Vol. 178. 188.

[21] Atze van der Ploeg and Koen Claessen. 2015. Practical Principled FRP:
Forget the Past, Change the Future, FRPNow! SIGPLAN Not. 50, 9 (Aug.
2015), 302–314. https://doi.org/10.1145/2858949.2784752

[22] Kazuhiro Shibanai and Takuo Watanabe. 2018. Distributed functional
reactive programming on actor-based runtime. In Proceedings of the
8th ACM SIGPLAN International Workshop on Programming Based on
Actors, Agents, and Decentralized Control. 13–22.

[23] Atze van der Ploeg. 2013. Monadic Functional Reactive Program-
ming. In Proceedings of the 2013 ACM SIGPLAN Symposium on Haskell
(Haskell ’13). Association for Computing Machinery, New York, NY,
USA, 117–128. https://doi.org/10.1145/2503778.2503783

[24] William W Wadge and Edward A Ashcroft. 1985. LUCID, the dataflow
programming language. Vol. 198. Academic Press London.

13

https://doi.org/10.1145/3299711.3242757
https://doi.org/10.1145/3299711.3242757
http://conal.net/papers/push-pull-frp
https://doi.org/10.1145/2544174.2500588
http://reactivex.io/
https://doi.org/10.1145/2858949.2784752
https://doi.org/10.1145/2503778.2503783

	Abstract
	1 Introduction
	1.1 Challenges of IoT Data Processing
	1.2 Functional Reactive Programming
	1.3 Proposed solution
	1.4 Contributions

	2 Cancellable Continuation Monad
	3 Push-based Reactive Stream
	3.1 Functor
	3.2 Monad
	3.3 Buffered Stream
	3.4 Real-time Push Stream

	4 Pull-based Data Stream
	4.1 Push Pull Conversion
	4.2 Event
	4.3 Behavior

	5 Discussion
	6 Related Work
	7 Conclusion
	References

