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Abstract
Concurrency control is difficult in JavaScript programs, where
event race due to asynchronous computation is a major
source of errors. While methods such as promises, cancel-
lation tokens, and reactive programming offer their own
advantages in addressing this problem, none offer a com-
plete solution.

In this work, we present an integrated solution for concur-
rency control of JavaScript using a library, arrowjs, which is
based on the abstraction of arrows. Arrowjs uses continua-
tion passing style to chain callbacks and it implicitly gener-
ates progress objects tomanage concurrency. Arrowjs can im-
plement a form of push-based reactive programming, where
event streams are arrow loops communicating through shared
memory. Arrowjs thus provides interoperability between
thread-like callback chains and event streams with a uni-
form concurrency control mechanism.

CCS Concepts • Software and its engineering → Do-
main specific languages; Concurrent programming struc-
tures.
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1 Introduction
Concurrency control in asynchronous programs is difficult.
Event races are common types of concurrency problems in
JavaScript programs where multiple events arrive in an unex-
pected order or rate resulting in harmful effects [8]. Program
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analysis is inadequate to debug poorly written programs. Re-
search indicates that even well-tested JavaScript applications
often do not adequately cover asynchronous callbacks [5].
Despite the advances in program analysis, static detection
of event races may require analysis of the entire JavaScript
language [18]. Static analysis of race conditions in JavaScript
is fundamentally limited by the complexity of the language
itself [13], where the specifics of the happens-before relation-
ship for event handlers often cannot be determined statically,
as it may depend on external events [18].

The programming community has adopted promises (and
async/await) to provide better concurrency control. With
promises, asynchronous tasks can be implemented as thread-
like logic without deeply-nested callbacks. However, it does
not provide adequate constructs to prevent event races [12].
Separate mechanism such as cancellation token [20] may be
used. However, applications with event streams are more
naturally implemented with reactive libraries such as rxjs1,
which uses event-based switching for concurrency control.
For some applications that include both thread-like logic and
event streams, there is a conflict of choice for concurrency
control mechanisms.
For example, suppose we want to retrieve the same data

from two files, A and B, available from two servers with
different formats. To save time, we download and process the
files in parallel and use the result that returns first. Suppose
that each file is concatenated from parts downloaded from a
list of URLs. Also, file A needs to be sorted after download
while file B needs to be filtered. Thus, the implementation
consists of two parallel tasks. For file A, the task is download,
sort, and save. For file B, the task is download, filter, and
save. Since only one copy of the data is needed, we should
race the two tasks. Using promises, the code might look like
Promise.race([download(fileA).then(x=>sort(x))

download(fileB).then(x=>filter(x))
]).then(x=>save(x));

(where the download function returns a promise that re-
solves when the file parts are downloaded and concatenated).
Unfortunately, this code does not allow the completion event
of either download to cancel the other task.
This problem can be solved using two cancellation to-

kens [20]: T1 and T2. For example, file A task calls cancel
on the source of T2 after it completes downloading to notify
file B task to cancel. File A task also checks the cancellation

1https://github.com/ReactiveX/rxjs
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status of T1 when it waits for asynchronous events. Simi-
larly, file B tasks use source of T1 to cancel file A task while
monitoring T2 for cancellation notice.
The problem can also be solved with reactive program-

ming. For example, the downloading of a file can be a stream
that stops when the completion event of the other file down-
load is received. However, this solution needs to implement
the two tasks in a way so that the completion event of one
file download can cause cancellation of the other stream.
This is unfortunate since the program is written to accom-
modate cancellation semantics rather than in a style that is
more natural to the application itself. While event streams
are convenient for file download, each task as a whole is
conceptually closer to a thread that should choose its point
of progress to trigger the cancellation of the other task.

In this work, we show that a uniform concurrency-control
mechanism can be applied to both streaming and thread-like
JavaScript code by encoding a push-based reactive interface
using arrowjs library [6]. Arrowjs was built upon the work of
arrowlets [10] by adding error handling,more flexible concur-
rency control (noemit), recursive arrow, and type-checking.
Arrowjs programs compose asynchronous operations using
arrows abstractions [9], which is a generalization of mon-
ads [17]. Arrowjs chains asynchronous callbacks by passing
the result of the computation to a result continuation and
passing any exception to the error continuation. The arrows
are also run with implicitly generated progress objects that
allow the completion event of an asynchronous arrow to
cause cancellation of other racing arrows. With the addition
of reactive interface, programmers can choose to use the
reactive API for event streams while composing them as
arrows for sequential or parallel execution with the same
concurrency control mechanism.
Our main contribution is the encoding of a push-based

reactive interface using the arrows abstraction with builtin
cancellation semantics. We will show that push-based reac-
tive programming can be implemented by modeling each
event stream as an arrow loop that sends events to a memory
location that may be observed by another event stream. The
completion of an event stream is simply the completion of
its arrow. Since an event stream is an arrow, it can be part of
another arrow that implements a thread-like task that races
against other tasks. Like Yampa [2], which uses arrows to
transform signals, we use arrows to transform event streams.
However, Yampa is demand-driven where events are routed
through a loop while our approach is data-driven, where
events are propagated through shared memory. Our treat-
ment of events is similar to how reactive values of push-pull
FRP [4] are sampled, where a stream processes an event from
its sources and then waits asynchronously for the next event
to arrive. Unlike other push-based, call-by-value FRP such as
Flapjax [16] and Scala.react [14], our events self-propagate,
which is similar to those of rxjs though our cancellation
semantics is based on progress of arrows.

2 Asynchronous Arrows
This work extends arrowjs [6] with a reactive API so that
logic with streaming events can be implemented more natu-
rally. The syntax of arrowjs is shown in Figure 1, where klift
for lifting asynchronous function and choice for branching
are new additions.

a ::= f .lift() lift sync function f
| f .klift() lift async function f
| a1.seq(a2) run a1 and then a2
| a1.all(a2) run both a1 and a2
| a1.any(a2) race a1 and a2
| f .choice(a1,a2) branch to a1 or a2 using f
| a1.catch(a2) catch exception in a1 with a2
| a.noemit() make progress only after a
| fix(α ⇒ a) recursive arrow

f ::= x ⇒ e synchronous function
| (x ,k) ⇒ e e passes async result to k
| (x ,k1,k2) ⇒ e e calls k1 or k2 depending on x

e ::= . . .
| a.call(x ,p,k,h) run arrow a with input x ,

progress object p,
result continuation k , and
error handler h

| a.run() a.call(null, p, x ⇒ x , x ⇒ x)

Figure 1. Syntax of Arrows

Arrowjs programs lift synchronous and asynchronous
functions as arrows and composes them to run sequentially,
in parallel, or recursively. Each arrow is translated to an
object with a call method that takes 4 parameters: an input, a
progress object, a result continuation, and an error handler.

A synchronous function f : a -> b can be lifted to an arrow
of the type a ~> b using lift: ('a -> 'b) -> ('a ~> 'b),
where ~> is arrow type constructor and 'a and 'b are type
variables. f .lift() wraps the function f in an object with a
call method that takes inputs: x , p, k , and h, where x : a is the
input, p is a progress object, k : b->_ (where _ is top type) is
a continuation that takes the result of f , and h is a handler
that is called with any exception thrown in f .
An asynchronous function f : (a, b->_) -> _ is lifted

using klift: (('a, 'b->_) -> _) -> ('a ~> 'b), where
f takes an input x: a and a callback k: b->_ to receive the
asynchronous response. When a klifted arrow completes, it
first checks the progress object to see whether it is cancelled
before passing the response to the result continuation and
then signals its progress with a call to the progress object so
that other arrows racing with this arrow may be cancelled.
For example, in Listing 1, Arrow.on(elem, evt) is an

arrow that returns a DOM event and Arrow.delay(n) is an
arrow that returns its input after n milliseconds of delay.
A klifted function can return a clean-up function that is
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called after k is invoked or when the arrow is cancelled.
In this example, the clean-up function removes the event
listener. A lifted or composed arrow runs at most once. For
example, Arrow.on('#canvas', 'mousedown') returns a
mouse down event on a canvas at most once (even if the
clean-up function is not provided).

Arrow . on = ( elem , ev t ) =>
( ( _ , k ) => {

/ ∗ @arrow : : _ ~> Even t ∗ /
$ ( elem ) . on ( evt , k ) ;
return _ => $ ( elem ) . o f f ( evt , k ) ;

} ) . k l i f t ( ) ;

Arrow . delay = n =>
( ( x , k ) => {

/ ∗ @arrow : : ' a ~> ' a ∗ /
s e tT imeou t ( _ => k ( x ) , n ) ;

} ) . k l i f t ( ) ;
Listing 1. event & delay arrow ($ is an alias for jQuery)

seq: ('a~>'b) -> ('b~>'c) -> ('a~>'c)2 is used in
a1.seq(a2), which runs a1 and then passes its result to a2.

all: ('a~>'b) -> ('c~>'d) -> (('a,'c) ~> ('b,'d))
is used in a1.all(a2), which runs a1 and a2 in parallel and
returns their results in a pair.

any: ('a~>'b) -> ('a~>'b) -> ('a~>'b) is used in
a1.any(a2), which races a1 and a2 and returns the result of
one that makes progress first and cancels the other one. The
any combinator is implemented by passing a1 and a2 a pair
of progress objects that observe each other’s progress so that
if one makes progress then the other one is cancelled.
An asynchronous arrow makes progress when it com-

pletes. A composite arrow makes progress when one of
its components makes progress. We can suppress the inner
progress events of an arrow a with noemit, where a.noemit()
only makes progress when a completes. For example, we
can define the until and race methods in Listing 2, where
a1.until(a2) cancels a1 if a2 makes progress and a1.race(a2)
delays cancellation until a1 or a2 ends.

Arrow . p r o t o t ype . unt i l = function ( a ) {
return t h i s . noemit ( ) . any ( a ) ;

} ;
Arrow . p r o t o t ype . race = function ( a ) {

return t h i s . noemit ( ) . any ( a . noemit ( ) )
} ;

Listing 2. until & race combinator

Listing 3 defines combinators for routing data between
arrows such as carry:('a ~> 'b) -> ('a ~> ('a, 'b))
that returns the input and output of an arrow and fanout:
('a~>'b) -> ('a~>'c) -> ('a~>('b,'c)) which is like
all except both arrows take the same input. Note that [x,x]
is given a tuple type and Arrow.id() is lifted from x => x.

const s p l i t = ( x => {
/ ∗ @arrow : : ' a ~> ( ' a , ' a ) ∗ /
return [ x , x ] ;

} ) . l i f t ( ) ;

2Method is annotated with curried type with receiver as the first argument.

Arrow . p r o t o t ype . carry = function ( ) {
return s p l i t . seq ( Arrow . i d ( ) . a l l ( t h i s ) ) ;

}
Arrow . p r o t o t ype . fanout = function ( t h a t ) {

return s p l i t . seq ( t h i s . a l l ( t h a t ) )
}

Listing 3. carry & fanout combinator

A function f : ('a, 'b->_, 'c->_) -> _ can be lifted to
choose to run one of two arrows a1: 'b~>'d and a2: 'c~>'d,
where f .choice(a1,a2) : 'a~>'d runs a1 if f (x ,k1,k2) calls
k1 and it runs a2 if the function calls k2.

As shown in Listing 4, choice can encode ifThenElse:
('a~>Bool) -> ('a~>'b, 'a~>'b) -> ('a~>'b)

where a1.ifThenElse(a2,a3) runs a2 with input of a1 if a1
returns true and runs a3 otherwise.
Arrow . p r o t o t ype . i f T h enE l s e =

function ( thenA , e l s eA ) {
const choiceA = ( ( [ x , b ] , k1 , k2 ) => {

i f ( b ) k1 ( x ) ; e l se k2 ( x ) ;
} )
. choice ( thenA , e l s eA ) ;

return t h i s . carry ( ) . seq ( choiceA ) ;
}

Listing 4. branch combinator

The arrow a1.catch(a2) catches any exception thrown in a1,
passes it to a2, and returns its result. Otherwise, the result
of a1 will be passed to the next arrow.

fix : ('a~>'b -> 'a~>'b) -> 'a~>'b is used in fix(α ⇒

a) that defines a recursive arrow where α is the recursive
reference in a. For example, using fix, we can define forever
that runs an arrow forever and whileTrue that runs an arrow
repeatedly while it returns true in Listing 5.

Arrow . p r o t o t ype . f o r e v e r = function ( ) {
return Arrow . f ix ( a l pha => t h i s . seq ( a l pha ) )

} ;
Arrow . p r o t o t ype . whi l eTrue = function ( ) {

return Arrow . f ix ( a l pha =>
t h i s . i f T h enE l s e ( a lpha , Arrow . i d ( ) ) ) ;

} ;
Listing 5. forever & whileTrue combinator

An arrow a: 'a~>'b is executed with a.run(), which runs
an arrow by calling it with a null input, a new progress object,
and an identity function as the result/error continuation.

2.1 Autocomplete example
To illustrate the utility of arrowjs, we give an example of
adding autocomplete feature to a search box. Autocomplete
provides hints to users as they type in characters in a search
box. If the hints are queried from a remote source, users
may type new characters before the previous query returns,
in which case, the pending requests must be cancelled. An
arrow implementation is shown in Listing 6, which contains
arrows of the following types:

keystroke : _ ~> Event
Arrow.delay(1000) : 'a ~> 'a
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query: Event ~> String
display: String ~> _
loop : Event ~> 'a

const key s t r ok e = Arrow . on ( ' # t e x t b ox ' , ' i npu t ' ) ;

const l oop = Arrow . delay ( 1 0 0 0 ) / / d e l a y 1 s e c o nd
. seq ( query ) / / s end query f o r h i n t s
. noemit ( ) / / make p r o g r e s s h e r e
. seq ( d i s p l a y ) / / d i s p l a y que ry r e s u l t
. seq ( k ey s t r ok e ) / / wa i t f o r n e x t i n p u t
. any ( k ey s t r ok e ) / / c a n c e l d e l a y o r p end ing query
. f o r e v e r ( ) ; / / l o o p back wi th i n p u t e v e n t

key s t r oke / / f i r s t i n p u t s t a r t s t h e l o o p
. seq ( l oop )
. run ( ) ; / / ' run ' s t a r t s t h e arrow

Listing 6. Autocomplete

The arrow keystroke emits events when a user types in
the search box. Then, it starts a loop that waits a second
before sending a query with the event and continues to wait
for another keystroke. If a keystroke occurs before the delay
ends, the query is not sent. If the keystroke occurs after the
delay but before the query returns, the result is ignored and
the whole process restarts. The 1 second delay ensures that
the user has to pause typing for 1 second before the query is
sent but as soon as the user starts typing again, any pending
timeouts or queries are cancelled.

The cancellation semantics is clearer with parenthesis:
( ( Arrow.delay(1000).seq(query).noemit() )

.seq(display).seq(keystroke) )
.any(keystroke)

The arrow in the first and second line runs in parallel with
keystroke in the third line because of the any combinator.
An asynchronous arrow makes progress when it completes
so that Arrow.delay(1000) makes progress when it ends.
The same is true for query. Since we do not want the delay
arrow to cancel keystroke until the autocomplete query
ends, wewrap both the delay arrow and the query arrowwith
noemit so that it makes progress only after query returns.

Note that when using a.forever(), the result of a is used
as input to run a again. In the autocomplete example, the
result of the loop body is always the event from keystroke.

3 Reactive Interface in Arrows
In this section, we explain the encoding of a push-based
reactive API using arrows, where the operators to construct
and transform streams are shown in Figure 2.
The autocomplete example in Listing 6 is not easy to un-

derstand since it uses a recursive arrow to handle reoccurring
keystroke events, but this can be represented more naturally
as an event stream. For example, Listing 7 implements auto-
complete as event stream, where Stream.fromEvent creates
a stream from keystrokes, switch sends a delayed query for
each keystroke while canceling the previous query if it has
not completed, map displays the query result it receives.

s ::= repeat(a) emit output of a forever
| fromEvent(x, e) DOM events stream
| interval(n) emit its input every n ms
| forEach(l, a) run a with each element in l
| s .take(n) emit n events of s
| s .takeUntil(a) stop s with a’s progress
| s .filter(a) filter events of s with a
| s .map(a) map events of s to a
| s .mapAsync(a) map s to a asynchronously
| s .switch(a) switch to a for each event of s
| s .switchMap(s′) switch to s ′ for each event of s
| s1.merge(s2) merge events of s1 and s2
| s1.snapshot(s2) sample s1 for each event of s2
| s1.concat(s2) emit events of s1 and then s2
| s .reduce(a) reduce values from events of s

Figure 2. Stream constructors and operators

Stream . fromEvent ( ' # t e x t b ox ' , ' i npu t ' )
. sw i t ch (

Arrow . delay ( 1 0 0 0 ) / / d e l a y 1 s e c o nd
. seq ( query ) / / s end query

)
. map ( d i s p l a y ) / / d i s p l a y t h e r e s u l t
. arrow ( ) . run ( ) ; / / run t h e s t r e am arrow

Listing 7. Autocomplete as event stream

There are two challenges in encoding a push-based reac-
tive API with arrows. The first challenge is to construct and
transform event streams with recursive arrows. A stream
is constructed with a recursive arrow since the klifted ar-
row for receiving events runs only once. However, for an
operation such as taking the first n events of a stream s , we
cannot simply combine the recursive arrow of s with another
arrow to count the number of events received. To solve this
problem, we let each stream emit events to an emitter object
to be used by subsequent operators. The second challenge is
to monitor the completion status of an asynchronous stream,
which completes if the source stream ends and all pending
asynchronous operations have ended. To solve this problem,
we use counter arrows to monitor the pending operations.

3.1 Stream Constructors
A stream: Stream 'a 'b = (Emitter 'b) -> ('a ~> 'b)
takes an emitter object and returns an arrow that emits
events to the emitter.

The emitter class is defined in Listing 8. Each emitter has
an arrow listenA that registers a listener for events that
are emitted by an event stream via emitA. The latest event is
stored in the field now so that an event stream can be sampled
as a behavior by the arrow nowA. The emission of events and
sampling of the latest event are synchronous while listening
for new events is asynchronous (which blocks until the event
is received).
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c l a s s Em i t t e r {
l i s t e n e r = [ ] ; / / e v e n t consumer
now = unde f ined ; / / l a t e s t e v e n t

emitA = ( x => { / / s end e v e n t
/ ∗ @arrow : : ' a ~> ' a ∗ /
t h i s . now = x ;
t h i s . l i s t e n e r . f o rEach ( l => l ( x ) ) ;
return x ;

} ) . l i f t ( ) ;

l i s t e nA = ( ( _ , k ) => { / / wa i t f o r new e v e n t
/ ∗ @arrow : : _ ~> ' a ∗ /
t h i s . l i s t e n e r . push ( k ) ;
return _ => {

t h i s . l i s t e n e r =
t h i s . l i s t e n e r . f i l t e r ( l => l != k ) ;

}
} ) . k l i f t ( ) ;

nowA = ( _ => { / / g e t l a t e s t e v e n t
/ ∗ @arrow : : _ ~> ' a ∗ /
return t h i s . now ;

} ) . l i f t ( ) ;
}

Listing 8. Emitter class

Event streams are defined with Stream class in Listing 9.
Each stream of the type Stream 'a 'b has a function arrowF
of the type (Emitter 'b) -> ('a ~> 'b). The instance
method makes an emitter e, applies arrowF to the emitter,
and sequences the resulting arrow with the arrow e.nowA
to return the last event of the stream (if it is finite).
c l a s s Stream {

c o n s t r u c t o r ( arrowF ) { t h i s . arrowF = arrowF ; }

i n s t a n c e ( ) {
const e = new Em i t t e r ( ) ;
return [ t h i s . arrowF ( e ) . seq ( e . nowA) , e ] ;

}
arrow ( ) { return t h i s . i n s t a n c e ( ) [ 0 ] ; }

} ;
Listing 9. Stream class

An event stream can be constructed from an arrow. List-
ing 10 defines repeat that emits the output of an arrow
forever, which has the type:

('a ~> 'b) -> Stream 'a 'b

fromEvent: (String, String) -> Stream _ Eventmakes
a stream that emits DOM events and the function interval:
Number -> Stream 'a 'a returns a stream that emits its
input on fixed interval.
Stream . r e p e a t = function ( arrow ) {

const f = em i t t e r =>
arrow . seq ( em i t t e r . emitA ) . f o r e v e r ( ) ;

return new Stream ( f ) ;
}
S tream . fromEvent = ( elem , ev t ) =>

Stream . r e p e a t ( Arrow . on ( elem , ev t ) ) ;

S tream . i n t e r v a l = n =>
Stream . r e p e a t ( Arrow . delay ( n ) ) ;

Listing 10. Repeat an arrow forever

A finite stream can be created from an array with forEach:
(['a], 'a ~> 'b) -> Stream _ 'b as shown in Listing 11.
This stream runs an arrow with each array element as input
and emits the arrow output. Each run of the arrow does
not start until the previous run ends. The usage of times
in Listing 11 is that a.times(n) runs the arrow a with input
from 0 to n − 1. Arrow.delay(0) is inserted before event
emission to relinquish control of the thread for each array
element to make sure that the consumer of this stream has a
chance to receive the event.
Stream . fo rEach = function ( a r ray , arrow ) {

const elementA =
( x => {

/ ∗ @arrow : : Number ~> ' a ∗ /
return a r r ay [ x ] ;

} ) . l i f t ( ) ;

const f = em i t t e r =>
elementA / / r e t u r n an a r r ay e l emen t
. seq ( arrow ) / / run ' ar row ' w i th e l emen t
. seq ( Arrow . delay ( 0 ) ) / / r e l i n q u i s h c o n t r o l
. seq ( em i t t e r . emitA ) / / em i t ' a r row ' o u t p u t
. times ( a r r ay . l e ng t h ) ; / / r e p e a t

return new Stream ( f ) ;
}

Listing 11. Finite stream by emitting output of ‘arrow’ with
each element of ‘array’ as input

3.2 Filtering Operators
We can limit the number of events from a stream with the
method take : Stream 'a 'b -> Number -> Stream 'a 'b
in Listing 12, which repeatedly listens for events of ‘this’
stream and emits to its own emitter n times. Arrowjs simpli-
fies the semantics of finite streams. The take stream com-
pletes when either its source stream completes or n events
have emitted. The expression thisArrow.race(loop) pre-
cisely implements these semantics, where thisArrow emits
source events while loop ends when n events have emitted.
The completion of either arrow completes the stream.
Stream . p r o t o t ype . t ake = function ( n ) {

const [ th isArrow , t h i s Em i t t e r ] = t h i s . i n s t a n c e ( )

const f = em i t t e r => {
const l oop = t h i s Em i t t e r . l i s t e nA

. seq ( em i t t e r . emitA )

. times ( n ) ;

return th i sArrow . race ( l oop ) ;
} ;

return new Stream ( f ) ;
}

Listing 12. Take n events from a stream

takeUntil:Stream 'a 'b -> (_~>'c) -> Stream 'a 'b
defined in Listing 13 emits events from ‘this’ stream until
its argument ‘arrow’ makes progress. This implementation
simply modifies the arrow of ‘this’ stream with the until
combinator so that it ends when ‘arrow’ makes progress.
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Stream . p r o t o t ype . t a k eUn t i l = function ( arrow ) {
const f = em i t t e r => t h i s . arrowF ( em i t t e r )

. unt i l ( arrow ) ;

return new Stream ( f ) ;
} ;

Listing 13. Take events from a stream until the argument
‘arrow’ makes progress

Events may be filtered with an arrow that takes events as
input and returns a Boolean. As defined in Listing 14, filter :
Stream 'a 'b -> ('b ~> Bool) -> Stream 'a 'b is similar
to the takemethod except that filter uses the branch com-
binator ifTrue to decide whether to emit an event or skip it.
The method ifTrue is a syntax sugar, where a1.ifTrue(a2)
translates to a1.ifThenElse(a2, Arrow.delay(0)).
Stream . p r o t o t ype . f i l t e r = function ( arrow ) {

const [ th isArrow , t h i s Em i t t e r ] = t h i s . i n s t a n c e ( )

const f = em i t t e r => {
const l oop = t h i s Em i t t e r . l i s t e nA

. seq ( arrow . i f T r u e ( em i t t e r . emitA ) )

. f o r e v e r ( ) ;

return th i sArrow . race ( l oop ) ;
}

return new Stream ( f ) ;
} ;

Listing 14. Emit an event from a stream if ‘arrow’ returns
true with the event as input

3.3 Transformation Operators
map : Stream 'a 'b -> ('b ~> 'c) -> Stream 'a 'c trans-
forms an event stream by applying an arrow to each input
event and emits the result of the arrow. Unlike libraries such
as rxjs and Flapjax and to preserve arrow abstraction, we
cannot map to a function that returns streams. The definition
of map in Listing 15 is similar to that of filter except that
input events are passed to ‘arrow’, whose output is emitted.
Stream . p r o t o t ype . map = function ( arrow ) {

const [ th isArrow , t h i s Em i t t e r ] = t h i s . i n s t a n c e ( )

const f = em i t t e r => {
const l oop = t h i s Em i t t e r . l i s t e nA

. seq ( arrow . seq ( em i t t e r . emitA ) )

. f o r e v e r ( ) ;

return th i sArrow . race ( l oop ) ;
} ;

return new Stream ( f ) ;
} ;

Listing 15. Map events of ‘this’ stream to the argument
‘arrow’ and emit its output

This encoding has a problem: if the source stream com-
pletes, the mapped stream completes as well. However, if
‘arrow’ is asynchronous, the last event is still being processed
when the stream completes. We should wait for the last event
to complete before terminating the map stream.

To solve this problem, we define a counter in Listing 16 to
remember the number of pending events.
const Counter = function ( ) {

l e t count = 0 ;

const incA = ( x => {
/ ∗ @arrow : : ' a ~> ' a ∗ /
count = count + 1 ;
return x ;

} ) . l i f t ( ) ;

const decA = ( x => {
/ ∗ @arrow : : ' a ~> ' a ∗ /
count = count − 1 ;
return x ;

} ) . l i f t ( ) ;

const i s P o s i t i v e A =( _ => {
/ ∗ @arrow : : _ ~> Boo l ∗ /
return count > 0 ;

} ) . l i f t ( ) ;

return [ incA , decA , i s P o s i t i v eA ] ;
}

Listing 16. Counter for pending events

The revised definition of map is in Listing 17, where we run
the arrow incA and decA before and after running the ‘ar-
row’. We check the counter with positiveA after the source
stream completes. If the counter is positive, it means there is
a pending event and we wait for it using emitter.listenA
before stopping the map stream.
Another problem with the map operation is that its loop

for listening to source events does not return for the next
event until ‘arrow’ completes, which may be asynchronous
and take longer than the time period before the next event
arrives. In other words, map may miss events if ‘arrow’ is
too slow. These semantics may actually be desirable since it
means there is back-pressure and missing events is a poten-
tial solution.
Stream . p r o t o t ype . map = function ( arrow ) {

const [ th isArrow , t h i s Em i t t e r ] = t h i s . i n s t a n c e ( )

const f = em i t t e r => {
const [ incA , decA , i s P o s i t i v eA ] = Counter ( ) ;
const l oop = t h i s Em i t t e r . l i s t e nA / / i n p u t

. seq ( incA / / i n c c o u n t e r
. seq ( arrow ) / / run arrow
. seq ( decA ) / / d e c c o u n t e r
. seq ( em i t t e r . emitA ) ) / / o u t p u t

. f o r e v e r ( ) ;
return th i sArrow / / wa i t f o r l a s t e v e n t

. seq ( i s P o s i t i v eA . i f T r u e ( em i t t e r . l i s t e nA ) )

. race ( l oop ) ;
} ;

return new Stream ( f ) ;
} ;

Listing 17.Map operator with proper termination

Alternatively, we can map events to an arrow as soon as
the event arrives and emit the result of the arrow in the order
in which it completes. This method mapAsync is shown in
Listing 18, which is similar to map except that the event loop
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uses spawn : ('a~>'b) -> ('a~>'c) -> ('a~>'b) to run
the argument ‘arrow’ without waiting for its completion.
The arrow a1.spawn(a2) runs a1 and a2 in parallel with the
same input and returns the result of a1 without waiting for
a2 to complete.

Since an instance of ‘arrow’ is spawn as soon as a source
event arrives, multiple events might be pending when the
source stream completes. Thus, we need to run

isPositiveA.whileTrueThen(emitter.listenA)
after the source stream completes to wait for event emission
as long as the counter is positive. Note that whileTrueThan
is a syntax sugar and the arrow a1.whileTrueThen(a2) ≡

fix(α ⇒ a1.ifTrue(a2.seq(α))).
Stream . p r o t o t ype . mapAsync = function ( arrow ) {

const [ th isArrow , t h i s Em i t t e r ] = t h i s . i n s t a n c e ( )

const f = em i t t e r => {
const [ incA , decA , i s P o s i t i v eA ] = Counter ( ) ;
const l oop = Arrow . f ix ( a l pha =>

t h i s Em i t t e r . l i s t e nA / / l i s t e n i n p u t
. seq ( a l pha . spawn (

incA / / i n c c o u n t e r
. seq ( arrow ) / / run arrow
. seq ( decA ) / / d e c c o u n t e r
. seq ( em i t t e r . emitA ) ) ) ) ;

/ / em i t o u t p u t
return th i sArrow
. seq ( i s P o s i t i v eA . whi leTrueThen (

em i t t e r . l i s t e nA ) )
. race ( l oop ) ;

} ;
return new Stream ( f ) ;

} ;

Listing 18.Map events to an arrow when they arrive

For example, if we map the input events from a textbox to
an autocomplete query and display the result as below, then
some input events may be dropped if a query takes too long
to return.
Stream.fromEvent('#textbox', 'input')

.map(query)

.map(display)

However, if we change map to mapAsync for the query, then
all input events are mapped to the queries but the displayed
result may be out of order.
Stream.fromEvent('#textbox', 'input')

.mapAsync(query)

.map(display)

To implement autocomplete as streams, we define switch:
Stream 'a 'b -> ('b ~> 'c) -> Stream 'a 'c in List-
ing 19. Each time an event is received from the source stream,
the ‘arrow’ that the switch stream is currently running is
cancelled and then restarted with the new event.
Stream . p r o t o t ype . sw i t ch = function ( arrow ) {

const [ th isArrow , t h i s Em i t t e r ] = t h i s . i n s t a n c e ( )

const f = em i t t e r => {
const [ incA , decA , i s P o s i t i v eA ] = Counter ( ) ;

const l oop = Arrow . f ix ( a l pha =>
t h i s Em i t t e r . l i s t e nA . seq ( / / wa i t f o r e v e n t

incA / / i n c c o u n t e r
. seq ( arrow ) / / run arrow
. seq ( decA ) / / d e c c o u n t e r
. seq ( em i t t e r . emitA ) / / em i t r e s u l t
. noemit ( ) / / makes p r o g r e s s h e r e
. seq ( a l pha ) / / wa i t f o r new e v e n t
. any ( a l pha ) / / r a c e a g a i n s t new e v e n t

) ) ;

return th i sArrow
. seq ( i s P o s i t i v eA . i f T r u e ( em i t t e r . l i s t e nA ) )
. race ( l oop ) ;

} ;
return new Stream ( f ) ;

} ;

Listing 19. Switch to run ‘arrow’ for each event

The event processing loop of switch has the below structure.
Arrow.fix( alpha =>

waitForEvent.seq(
doSomeWork.noemit()
.seq(alpha)
.any(alpha)

))

This arrow structure allows us to repeat the processing of
waitForEvent so that we can doSomeWork and if it com-
pletes, it loops back via seq(alpha) or it may be interrupted
by the next event via any(alpha).
In Listing 20, we define a switchMap method of the type

Stream 'a 'b -> Stream 'b 'c -> Stream 'a 'c, which
switches to a new instance of the inner stream for each event
of the outer stream. The arrow of the inner stream restarts
for each outer event. An arrow is defined to ‘pump’ the inner
events to the emitter of this stream. This ‘pump’ arrow races
with the inner stream in innerArrow.race(pump). Unlike
the termination of the switch stream, we cannot wait for the
processing of the last outer event since the inner stream may
continue to run. Thus, we define a helper emitter ‘end’ and
use end.emitA to signal the completion of the inner stream.
When the outer stream completes, we use end.listenA to
wait for the last inner stream to complete.
Stream . p r o t o t ype . switchMap = function ( i nne r ) {

const [ th isArrow , t h i s Em i t t e r ] = t h i s . i n s t a n c e ( )
const [ innerArrow , i n n e r Em i t t e r ]= i nne r . i n s t a n c e ( )

const f = em i t t e r => {
const [ incA , decA , i s P o s i t i v eA ] = Counter ( ) ;
const end = new Em i t t e r ( ) ; / / h e l p e r em i t t e r
const pump = i nn e r Em i t t e r . l i s t e nA

. seq ( em i t t e r . emitA ) . f o r e v e r ( ) ;

const l oop = Arrow . f ix ( a l pha =>
t h i s Em i t t e r . l i s t e nA . seq (

incA
. seq ( innerArrow . race ( pump ) )
. seq ( decA )
. seq ( end . emitA ) / / i n n e r s t r e am ends
. seq ( a l pha )
. any ( a l pha )

)
7
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) ;

return th i sArrow / / wa i t f o r i n n e r t o end
. seq ( i s P o s i t i v eA . i f T r u e ( end . l i s t e nA ) )
. race ( l oop ) ;

} ;
return new Stream ( f ) ;

} ;

Listing 20. Switch to an ‘inner’ stream for each event

We can use switchMap to implement drag and drop:
Stream.fromEvent('#canvas', 'mousedown')
.filter(isOnTarget)
.switchMap(

Stream.fromEvent('#canvas', 'mousemove')
.takeUntil(Arrow.on('#canvas', 'mouseup'))

)
.map(moveTarget)

In this example, the mouse-down events are filtered with
the isOnTarget arrow that returns true iff the mouse-down
position is within the target. The arrow moveTarget changes
the position of the target based on the mouse-move event.
The mouse-up event terminates the mouse-move stream.

3.4 Combination Operators
We can merge two streams by emitting the events of either
stream as soon as they arrive. The implementation of merge
: Stream 'a 'b -> Stream 'a 'b -> Stream 'a 'b is
in Listing 21. The merged stream completes if both of the
component streams complete.
Stream . p r o t o t ype . merge = function ( t h a t ) {

const [ th isArrow , t h i s Em i t t e r ] = t h i s . i n s t a n c e ( )
const [ thatArrow , t h a t Em i t t e r ] = t h a t . i n s t a n c e ( )

const f = em i t t e r => {
const l oop = t h i s Em i t t e r . l i s t e nA

. any ( t h a t Em i t t e r . l i s t e nA )

. seq ( em i t t e r . emitA )

. f o r e v e r ( )

return th i sArrow . fanout ( thatArrow ) . race ( l oop ) ;
}
return new Stream ( f ) ;

}

Listing 21.Merge two streams by emitting the latest event
of either stream

An event stream can be considered a behavior since its
latest event is stored in the emitter. In Listing 22, snapshot:
Stream 'a 'b -> Stream 'a 'c -> Stream 'a ('b,'c)
samples a stream when another stream emits an event. The
implementation of snapshot only needs to respond to events
of ‘that’ stream and when it happens, it checks the current
event of ‘this’ stream using thisEmitter.nowA and pairs it
with the emitted event of ‘that’ stream. The snapshot stream
ends when ‘that’ stream ends. To implement these seman-
tics, we use thisArrow.fanout(loop).race(thatArrow)
which only allows thatArrow to complete the execution
since loop never stops.

Stream . p r o t o t ype . snapsho t = function ( t h a t ) {
const [ th isArrow , t h i s Em i t t e r ] = t h i s . i n s t a n c e ( )
const [ thatArrow , t h a t Em i t t e r ] = t h a t . i n s t a n c e ( )

const f = em i t t e r => {
const l oop = t h a t Em i t t e r . l i s t e nA

. seq ( t h i s Em i t t e r . nowA . fanout ( Arrow . i d ( ) ) )

. seq ( em i t t e r . emitA )

. f o r e v e r ( )

return th i sArrow . fanout ( l oop ) . race ( thatArrow )
}
return new Stream ( f ) ;

}

Listing 22. Emit the latest event of ‘this’ stream along with
the current event of ‘that’ stream

Lastly, we show how two streams may be concatenated.
concat: Stream 'a 'b -> Stream 'b 'b -> Stream 'a 'b
in Listing 23 emits events from ‘this’ stream first and after
it completes, it emits events of ‘that’ stream. We race the
arrow of each of the two streams with its own loop for event
emission, which terminates when the stream ends. After the
loop for emitting events of ‘this’ stream stops, the loop for
emitting the events of ‘that’ stream starts.
Stream . p r o t o t ype . conca t = function ( t h a t ) {

const [ th isArrow , t h i s Em i t t e r ] = t h i s . i n s t a n c e ( )
const [ thatArrow , t h a t Em i t t e r ] = t h a t . i n s t a n c e ( )

const f = em i t t e r => {
const t h i s Loop = t h i s Em i t t e r . l i s t e nA

. seq ( em i t t e r . emitA )

. f o r e v e r ( ) ;

const tha tLoop = t h a t Em i t t e r . l i s t e nA
. seq ( em i t t e r . emitA )
. f o r e v e r ( ) ;

return th i sArrow . race ( t h i s Loop )
. seq ( thatArrow . race ( tha tLoop ) ) ;

}
return new Stream ( f ) ;

}

Listing 23. Emits events from ‘this’ stream before events
from ‘that’ stream

4 Combining Streams and Arrows
Event streams defined in our API can be used in arrows with
proper concurrency control. For the file download example in
the introduction, we can download file parts using a stream
and concatenate the parts in Listing 24.

We assume that fileListA and fileListB are two lists of
URLs and fetch: String ~> [String] is an asynchronous
arrow that takes a URL as input and returns the content
downloaded from the URL as a string array. We also assume
sort and filter are arrows that sort and filter string arrays
and save is an arrow that saves a string array to a file.
const c on c a t en a t e = ( ( c , x ) => {

/ ∗ @arrow ( [ ' a ] , [ ' a ] ) ~ > [ ' a ] ∗ /
return c . conca t ( x ) ;

} ) . l i f t ( ) ;
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const f i l e A = Stream
. fo rEach ( f i l e L i s t A , f e t c h ) \ \ download A p a r t s
. r educe ( c on c a t en a t e ) \ \ c on c a t en a t e A p a r t s

const f i l e B = Stream
. fo rEach ( f i l e L i s t B , f e t c h ) \ \ download B p a r t s
. r educe ( c on c a t en a t e ) \ \ c on c a t en a t e B p a r t s

/ / f i l e A and f i l e B r a c e a g a i n s t each o t h e r
f i l e A . arrow ( ) . seq ( s o r t )
. any (

f i l e B . arrow ( ) . seq ( f i l t e r )
)
. seq ( s ave ) / / w inne r o f t h e r a c e i s s av ed

Listing 24. Race two file downloads & processing

This example uses the reduce method in Listing 25 of the
type Stream 'a 'b -> (('b,'b) ~> 'b) -> Stream 'a 'b,
which applies a reducer arrow to each event from ‘this’
stream and emits the reduced results.
Stream . p r o t o t ype . r educe = function ( r e duc e r ) {

const [ th isArrow , t h i s Em i t t e r ] = t h i s . i n s t a n c e ( )

const f = em i t t e r => {
const l oop =

t h i s Em i t t e r . l i s t e nA / / wa i t f o r i n p u t e v e n t
. carry ( ) / / p a i r r e d u c e d v a l u e wi th e v e n t
. seq ( r e du c e r ) / / app ly r e d u c t i o n
. seq ( em i t t e r . emitA ) / / em i t r e d u c e d v a l u e
. f o r e v e r ( ) ; / / l o o p back wi th r e du c e d va l u e

return th i sArrow . race (
t h i s Em i t t e r . l i s t e nA . seq ( em i t t e r . emitA )
. seq ( l oop )

) ; / / 1 s t e v e n t i s i n i t i a l v a l u e t o r e d u c e l o o p
} ;
return new Stream ( f ) ;

} ;
Listing 25. Reduce events using a reducer arrow

For this example, we are only interested in the final re-
duced array of the stream. When a stream ends, it outputs
its last event. To receive the output, we convert a stream
to an arrow before sequencing it with another arrow. In
fileA.arrow().seq(sort) of Listing 24, we sequence the
arrow of fileA with sort. The output of fileA (last event –
concatenated array of downloaded file parts) is sent to sort.
The race between fileA and fileB works even if sort

and filter are asynchronous. The use of any instead of
race combinator ensures that the completion of fileA or
fileB cancels the other task immediately. The streams can
be part of any racing arrows and can still be cancelled. There
is no need to define explicit cancellation tokens or wait until
either file to complete processing before cancellation the
other. There is no need to make one task to explicitly react
to the event of the other task.

5 Related work
Arrows is related to monads [17] and idioms (or applica-
tive functors) [15]. In terms of expressive power, classic ar-
rows are weaker than monads but stronger than idioms [11]
though classic arrows extended with arrow application is

equivalent to monads [9]. Arrowjs may support higher-order
event streams with arrow applications while retaining the
cancellation semantics.
The arrows abstraction in arrowjs is less general than

the classic arrows [9]. For example, f1.klift().seq(f2.klift())
behaves the same as ((x ,k) ⇒ f1(x ,y ⇒ f2(y,k))).klift()
in isolation, but they have different cancellation semantics
when racing with others. The former makes progress when
f1 calls its callback while the latter makes progress when the
composite function does. To have the same effect, the former
arrow has to be wrapped in an noemit.

Asynchronous programming The addition of promises
(and its syntactic sugar async/await) in JavaScript has im-
proved the clarity of asynchronous programs. These con-
structs are also found in the asynchronous programming
model of F# [20], which uses monadic abstractions and con-
tinuation passing style to pass success, exception, and can-
cellation continuations, and cancellation tokens for each
asynchronous operation. Our implementation of arrowjs is
similar except that we use arrows abstraction and instead
of passing cancellation continuations and tokens, we pass
progress objects, which is similar to chained cancellation to-
kens that allow a cascading effect of cancellations. Cancella-
tion in racing arrows is triggered automatically via progress
made by one of the racing arrow, which can be delayed
via noemit or even suppressed. This form of concurrency
control is perhaps more suitable for JavaScript since it is
single-threaded. The waywe use emitters to send and receive
events has some similarity to how messages are exchanged
in the actor model [7], where an actor waiting on messages
suspends itself by storing its continuation and resumes from
that continuation when a message becomes available. The
difference is that the semantics of the emitter is not fixed and
the version we presented does not cache events while new
ones such as buffered emitter can provide varying behavior.

Functional reactive programming FRP started as a pull-
based design [3] and later research introduced push-pull
[4] and push-based [16] models for better performance and
lower latency. Events and behaviors can even be unified with
clocked signal functions [1]. The way that our stream pro-
cesses an event and then waits asynchronously for the next
event is similar to how reactive values [4] are sampled. Our
use of arrows is similar in concept to that of Arrowized FRP
such as Yampa [2] and Dunai [19], though we only trans-
form event streams (or piecewise-constant signals) instead
of continuous behaviors. Also, our interface is push-based,
where each stream pushes events through its emitter while
Yampa is pull-based, where external events and behaviors are
combined into a single input. Monadic synchronized stream
processing such as Dunai and Rhine [1] uses effective sig-
nal functions to store side effects including time in monads
and avoids event sampling. Though appealing, it is probably
difficult to take advantage of this approach in JavaScript.
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Event-based FRP such as Flapjax [16] and Scala.react [14]
propagates events based on the dependency graph of event
streams while we propagate events with operators such as
map and merge. rxjs provides a reactive API for managing
asynchronous event streams called ‘observables’. It features
combinators for observables, some of which we have also im-
plemented in arrowjs, for implementing common use cases
such as merging event streams, or mapping over the values
of a stream. Arrowjs improves upon rxjs by allowing for the
same combinators for event streams, while offering implicit
cancellation semantics.

Cancellation Semantics In JavaScript, tasks that are pend-
ing for events can always be stopped by removing or dis-
abling the callbacks waiting for the events. However, promise
does not have an cancellation mechanism like the progress
objects of arrowjs or cancellation tokens of F#. The race
function of promises only discards results of losing promises
but does not cancel them when they are pending for events.
Cancellation tokens [20] allow for cooperative cancellation
of tasks and user-defined cancellation checks. It gives users
more control in the context of multi-threaded languages. For
JavaScript, the implicit cancellation semantics of arrowjs is
perhaps more suitable. Cancellation in reactive program-
ming is based on switching on events. For example, the
untilB operator in Fran (or switcher in push-pull FRP [4])
stops a behavior on an event and replaces the current behav-
ior with a new one. The switch function in Yampa [2] re-
places one signal-function with another one as a response to
events. Later systems such as Flapjax [16] and Scala.react [14]
use similar mechanisms. This works well in settings where
events are external and a behavior does not stop on its own
but is less convenient in settings where events may depend
on the completion of finite streams.

6 Conclusion
In this paper, we presented an encoding of a reactive API
using arrowjs library. The encoding provides proper cancel-
lation semantics for implementing reactive applications as
event streams. It also allows streams to be mixed with arrows
code so that they can race with other streams without explic-
itly reacting to their completion events. This is suitable for
concurrency control of applications with thread-like tasks.
There are some possible variations to this design. For ex-

ample, we can define a buffered stream that uses a buffered
emitter with event queues, where the listenA arrow regis-
ters its callback only when the queue is empty. Higher-order
streams may be defined with arrow applications while still
preserving the cancellation semantics. Though exceptions
thrown in event streams can be caught by enclosing arrows
with the catch combinator, direct error handling for the
stream interface may be added.
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