
Arrows in Commercial Web Applications
Eric Fritz ∗, Jose Antony †, and Tian Zhao ‡

Department of Computer Science, University of Wisconsin – Milwaukee
Milwaukee, WI 53211

Email: ∗ fritz@uwm.edu, † jantony@uwm.edu, ‡ tzhao@uwm.edu

Abstract—Developing a scalable and robust web application is
difficult. One obstacle is JavaScript’s event model, which makes
asynchronous programs hard to maintain and extend. This paper
describes the case study of an Arrow-based JavaScript library for
asynchronous computation. Our library enables more modular
and understandable applications and it improves productivity
with static type inference.

I. INTRODUCTION

JavaScript remains the dominant language of the Web.
Accounting for scalability and reducing code complexity is
critical for the success of any software application. Web clients
are often tasked with receiving and processing large sets of
data, which often requires clever tricks on the part of the
developer (e.g. caching, paging, and prefetching). As part of
making the client smarter, it is important to choose the right
tools that provide developers the ability to create more efficient
applications without increasing maintenance costs.

In this paper, we explore the applicability of an Arrows-
based JavaScript library [1] which abstracts asynchronous
computation on the client in the context of commercial web
applications. To evaluate the library, we re-engineered a real-
world application using Arrows as the primary framework. We
found the Arrows code to have greater maintainability over
the vanilla JavaScript version. It was trivial to add additional
optimizations to make data handling more efficient.

The remainder of this paper is organized as follows. Sec-
tion II provides a description of the Arrows library. Section III
describes the structure and implementation of the application
under evaluation. We contrast an Arrow-based implementation
with a ‘bare-metal’ JavaScript implementation. Section IV
discusses an optional type system on top of Arrows which aids
the developer during design and implementation. Section V
lists related work and and Section VI concludes. The source
of the library and the application is available at the project
homepage1.

II. EVENT PROGRAMMING, PROMISES, AND ARROWS

In this section, we give a brief introduction to event pro-
gramming in JavaScript. We limit our focus to the following
three choices: registering callback functions to fire when an
event completes; using Promise objects to flatten nested call-
back functions; and using Arrows to describe an asynchronous
computation.

1http://arrows.eric-fritz.com

fn3

fn2

fn1

ev1 7→ c1

ev2 7→ c2

ev3 7→ c3

File system
. . .

Network

Call Stack Task Queue

Worker Threads

Register c1

On completion of ev1

When empty,

Poll for completed task

Fig. 1: The JavaScript Event Loop. The call-stack is coopera-
tive. Code can register a callback with a task. Once the current
call-stack is empty, a callback for a completed task is invoked.

A. Event Programming & The Event Loop

In many programming languages, concurrency is achieved
through preemption. When a thread of control reaches a point
where it blocks (e.g. accessing disk or reading data from a
socket), it yields control and allows another thread to run.
Contrarily, JavaScript executes all code synchronously in a
single thread. While code executes, it can register a chunk of
code to be invoked on the completion of some external event
(e.g. a timer triggering, requesting data from a remote server,
a user interacting with a field). Once the current thread of
control runs to completion, the queue of registered tasks is
polled for a completed event. If one is available, the chunk
of code associated with the event is invoked. If one is not
available, the interpreter blocks. Once the task queue is empty,
the program halts. This sequence of events is illustrated by
Figure 1.

No call in JavaScript that requires access to an external
resource blocks – instead, it accepts a callback function which
is registered to the completion of the event. Callbacks are
seen as a form of continuation-passing-style (CPS) [2]. On
the client-side, this allows responsive handling of events; on
the server-side, this allows concurrent request processing.

An empirical study by Gallaba et al. [3] characterizing the
use of callback functions in JavaScript has concluded that,
on average, every 10th function definition takes a callback
argument, every 5th function callsite takes a callback argument,
and 72% of all callsites in client-side code are asynchronous

http://arrows.eric-fritz.com

(eventually calling an asynchronous function).
Unfortunately, the heavy use of callbacks creates a non-

linear flow of control. Often, callback functions are declared
anonymously and cannot be invoked except from their point
of definition, which hinders function reuse. Callback functions
can be nested to arbitrary levels. All of these features make
callbacks difficult to understand and maintain.

Furthermore, the built-in try/catch exception handling
mechanism works only for synchronous code. There is no
natural way to catch an exception which is thrown asyn-
chronously. Over time, an error-first protocol idiom has
emerged within the JavaScript community. In this idiom, the
first argument to a callback is reserved for an error value.
If the value is non-null, the function invoking the callback
has, in some manner, failed. Unfortunately, adherence to this
convention is non-enforceable.

1 http.get('/articles', (req, res) => {
2 db.openConnection(host, creds, (err, conn) => {
3 if (err != null) res.send('Error: ' + err)
4 else {
5 conn.query('select * from articles', (err, results) => {
6 if (err != null) res.send('Error: ' + err);
7 else res.send(results);
8 });
9 }

10 });
11 });

Fig. 2: An example use of asynchronous callbacks and error-
first protocol on the server-side.

Figure 2 shows an example use of callbacks. The first
callback defines the function that handles a request to the
/articles endpoint. The second callback is invoked after
a connection to the database has been opened - if a database
connection could not be created, then err is expected to be
a non-null value. The third callback is invoked after the select
query is executed. Again, the err value is non-null if the
query does not succeed. Anonymous callback definition and
callback nesting, found to be widely used in practice [3], taxes
code comprehensibility.

B. Promises

The JavaScript ecosystem has seen the need for improving
event programming idioms and has responded accordingly.
jQuery 1.5 introduced deferred objects and other popular
JavaScript framework and libraries have popularized promises.
With ES6, Promises have arrived natively in JavaScript.

A Promise is an object which represents the result of a
(possibly asynchronous) computation. The promise object may
be in one of three states: pending (the required event has not
yet fired), resolved (the required event fired successfully), or
failed (the required event has fired unsuccessfully). A callback
can be registered to the promise to be invoked when the
promise transitions to either the resolved or failed state.

Promises provide a way to compose callbacks, and also
provide a means of error handling. Figure 3 shows a Promise
version of the callback-structured code in Figure 2. Notice the

difference in nesting levels as well as the de-duplicated error
handling code. In this example, both openConnection and
query return a promise object instead of accepting a callback
parameter. The user registers a function to be invoked on
success with the then method, and a function to be invoked
on failure with the catch method.

1 http.get('/articles', (req, res) => {
2 db.openConnection('host', creds)
3 .then(conn => conn.query('select * from articles'))
4 .then(res.send)
5 .catch(err => res.send('Error: ' + err);
6 });

Fig. 3: Using promises instead of callbacks.

Promises also provide two functions for convenience. The
method Promise.all takes a collection of promises and
resolves once all of the promises resolve, and the result of the
promise is a symmetric collection containing each result. The
method Promise.race takes a collection of promises and
resolves once any of the promises resolves, and the result of
the promise is the value of the promise which resolved first.

C. Arrows

Arrows [1] are a more expressive solution to the problem
of callbacks inspired by the work of Khoo et al. [4]. An arrow
is a function that takes some input and produces some output,
possibly asynchronously. The value produced by an arrow can
only be consumed by another arrow. A JavaScript function can
be lifted into an arrow.

Arrows subsume the sequencing and error-handling fea-
tures of Promises as described above. However, there are
some major differences. Instead of representing the value of
a computation, an arrow represents the computation itself.
Composing arrows together builds a state machine which
describes some sequence of user interaction events, access to
external resources, and code execution. Arrows, in addition to
sequencing and error handling, provide a means for canceling
computation, repeated computation, and a more expressive
version of the Promise.race method which allows the user
to configure the definition of a winning computation (e.g. the
first arrow to resume after blocking).

1 const value = new LiftedArrow((el, ev) => $(el).val());
2 const fetch = new AjaxArrow(q => {'url': buildUrl(q)});
3 const display = new LiftedArrow(list =>
4 $('#results')
5 .empty()
6 .append(list.map(x => $('').text(x))));
7

8 const handler = Arrow.seq([value, fetch, display])
9 .on('keyup');

10

11 Arrow.seq([new ElemArrow('#input'), handler])
12 .forever()
13 .run();

Fig. 4: An example application using Arrows which populates
a list in the DOM as the user types.

Figure 4 illustrates a minimal autocomplete example using
Arrows. In this small example, two functions are lifted into two
respective arrows (lines 1 and 3-6). The arrow value takes
a text input element and returns its value. The arrow fetch
takes a query string q as an argument and fetches results from
a remote server. The arrow display takes a list of results
from a remote server and appends them to a list element.

The composition on lines 8-12 create an abstract compu-
tation which is finally run on line 13. Arrows divorce the
definition of computation from execution, allowing an arrow
to be created without being executed. This allows complex
arrow composition to be used in multiple arrows. To contrast,
Promises have no such delineation which tends to hinder reuse.

The ElemArrow object is an arrow which simply returns
a DOM element. The seq method is equivalent to the
Promise.then method. The on method takes an element
and waits for an event to fire on that element (in this case,
the keyup event of the #input element). The handler of the
on combinator is invoked once with the element and event
object as arguments (and is then immediate de-registered).
The forever method simply re-invokes the arrow after
completion, indefinitely.

III. APPLICATION & IMPLEMENTATION

In this section we describe a non-trivial application which
we use to evaluate use of Arrows in practice. The application is
a reproduction of a real-world inventory management system.
We focused on the display of the inventory in the form of a
paginated grid which can be filtered by a search term.

Server-side pagination was a strong requirement, as the
amount of data in a live application would be too large to
transmit to the client all at once – and most of the data would
be wasted at client-side in a large number of cases where the
user only cares about a handful of results.

Filtering by a search term is implemented as another query
to the remote server. To increase responsiveness on the client-
side, we opted to implement filtering as a typeahead. Unfor-
tunately, this increases the chatter between the client and the
server when a new request is fired on each keystroke.

To decrease chatter between the client and the server, we
implemented a cache for AJAX requests which are live for
a configurable period of time. Applications with fewer data
modifications and applications that can stand to serve users
with partially stale data can increase the expiry of cached
records.

To decrease the user-perceived latency in paging-forward,
we chose to prefetch the next page of results into the AJAX
cache after displaying the current page of the results. Often,
the next page it will already be in the cache when the user
requests the next page. As long as the user is on the current
page of results for the amount of time that it takes to prefetch
a page, loading will always appear instantaneous. However,
the prefetch should not interfere with the ability of the user to
control the interface, so the prefetch should be canceled when
the user interacts with a component which changes the set of
results being displayed.

To stop superfluous requests to the remote server when
filtering, we cancel ongoing AJAX requests when the user
begins to modify the search term. To further reduce the number
of requests which will be subsequently canceled, we request
the initial page for a search term 400 milliseconds after the
last keystroke occurs.

A. Callback Client Implementation

An example implementation of result set filtering and pag-
ing using only callbacks is given in Figure 5. The optimiza-
tions described above disproportionally increase the complex-
ity of the code. The control flow is convoluted and does not
follow a linear sequence of events.

1 // Filtering
2 var t = null;
3 $('#filter').on('keyup', function() {
4 // Cancel previous timer, if one exists
5 if (t != null) { clearTimeout(t); t = null; }
6

7 // Send AJAX request after 400ms delay
8 t = window.setTimeout(function() {
9 sendRequest($('#filter').val(), 1, handle)

10 }, 400);
11 });
12

13 // Paging
14 function handle(resp) {
15 display(resp.results);
16

17 // Load next page after clicking next
18 $('#next').one('click', function() {
19 sendRequest(resp.query, resp.next, handle);
20 });
21 }
22

23 function sendRequest(query, page, callback) {
24 try {
25 // Lookup either returns results or throws the key
26 callback(lookup([query, page]));
27 } catch(key) {
28 $.ajax({
29 url: buildUrl(query, page),
30 success: function(response) {
31 var data = JSON.parse(response);
32 store(key, data); // Puts (key -> data) in cache
33 callback(data); // Continue computation
34 }
35 });
36 }
37 }

Fig. 5: An example for filtering with delay and paging with
cache (but no prefetch). Lines 1-21 implement result set
filtering by sending a query after 400ms of delay. sendRequest
checks for a value in a cache and sends an AJAX request on
cache miss. The function also displays the result, stores it in
the cache, and sets a callback for the next button of the result
grid.

In the example, filtering is implemented as a callback that
reacts to the keyup event on a textbox. To delay the invocation
of the callback, we use a timer that goes off after 400ms.
However, the timer is canceled if another keyup event occurs
before time is up. The timer is stored in a global variable
since there is no way for the callback to the textbox to get a
reference to the timer otherwise. The filtering function calls
the function sendRequest, which checks local cache using the

query text and a page number as the key sends an AJAX
request to the server if the key is not found.

As this example demonstrates, one of the main problems
with web applications is that the control flow logic is often
obscured by callbacks and side effects. In this example,
caching logic is invoked by the AJAX callback, filtering delay
adds a callback layer, while the timer cancellation depends on
the side effect of a global variable. Together, the sequencing
code becomes tightly coupled with the code that provides basic
functionality, reducing modularity and decreasing readability
and maintainability.

Furthermore, this implementation hides a subtle bug. Once
the user types in some text and a page of results is displayed,
a click event is registered on line 42. If the user types some
more, another page of results is displayed and an additional
click event is registered on the same line. At this point, two
active handlers will race to load the second page of two
different result sets when only one page is expected to be
fetched. This can be fixed with the addition of another global
definition which cancels a previously registered callback when
a new one is registered.

Alternatively, we can use third-party libraries such as
select2 or paramQuery, which provide optimized solutions
for common operations such as paging. While it is easy to
learn and integrate these libraries, it is difficult to customize
or extend their features. For example, these libraries have
no built-in support for data caching, delayed typeahead, or
AJAX cancellation. Other than editing the library directly,
which makes it unsafe for upgrade, it is nearly impossible
to implement extension points which invoke a method upon a
particular action or event.

Another method of implementation is to use Promises,
which can chain together asynchronous computation without
explicit callbacks. However, Promise library only supports
acyclic control flow so that recursive operations such as
the delayed filtering cannot be directly encoded. Moreover,
dataflow between chained functions is indirect and it is difficult
to detect source of errors if the inputs received from previous
function in the chain are used incorrectly.

B. Client Implementation using Arrows

Our Arrows library provides superior solution. Users can
construct asynchronous and recursive computation using arrow
constructors and combinators, which is more understandable
and more modular. Since the composition of an arrow is
separated from its execution, we can apply static analysis to
detect errors early.

Figure 6a and Figure 6b list the complete set of problem-
specific arrows defined for this implementation. We have
discarded type annotations, discussed further in Section IV,
attached to the functions for brevity.

Nine arrows were declared, but only ajax and handle are
problem-specific. The lookup and store arrows are very
general and work without modification in many applications.
The extraction arrows in Figure 6b exist only to make routing

of data more convenient and do not reduce any complexity
inherent in the problem.

Figure 6c presents the remaining implementation, which
builds the main arrows, filtering and paging, and
executes the former. We describe each arrow, in turn, in the
following.

The filtering arrow is a recursive arrow constructed
from fix. First, the arrow blocks until a keyup event occurs
on an element matching the #filter selector. Then, the arrow
creates a tuple containing the value of #filter and the constant
value 1, which is used later as the ‘initial’ page. This value is
fed into both the paging arrow (beginning after a 400ms
delay) and the filtering arrow (referenced recursively
as a) which are run in parallel. The first arrow does not
finish, as the execution of paging is recursive. However, if a
makes progress (resumes after blocking), then the first arrow
is canceled and the execution of this arrow effectively restarts
from the beginning.

The paging arrow receives the target query term and page
number as input. First, the current page is fetched from a
remote server or a cache by cachedAjax. Then, a tuple of
the form ((q, p), (q, n),) is constructed by the fanout
arrow, where q is the query term, p is the previous page
number, n is the next page number, and is the result
of display, which we discard. The construction of the last
value also executes the arrow handle as a side-effect, which
modifies the DOM to display the current page of results.

Then, the execution of the arrow blocks until a click event
occurs on either the #prev element or the #next element.
Clicking the #prev element will extract the (q, p) term from
the tuple above and feed that back into a recursive call of the
arrow. Clicking the #next element will pass (q, n) instead.
We do not use the on combinator here, as seen in other parts
of the composition, as we care only that the event did fire,
but not the event itself. We use the EventArrow directly to
pause computation until the user directs the arrow to continue
execution.

The runFirstIfPossible construction will attempt to
prefetch the next page of results from the remote server (if it
does not exist in the cache), but will abandon the request if
the user selects a pagination control before it can complete.

As our solution demonstrated, the control-flow of arrows is
declared directly by the arrow composition. With callbacks,
the program-specific logic is mixed with sequencing and
event registration so that its control flow is difficult to de-
termine syntactically. Arrows are also reusable. The functions
makeCached and runFirstIfPossible can be applied
to other arrows for similar purpose. The arrow implementation
is also more modular. In our example, the paging arrow could
be used without filtering, or with a different outer layer.

Note that the code in Figure 5 is shorter than the code in
Figure 6 because the latter also supports paging in the reverse
direction, implements optimistic prefetching, and disables
buttons when pending results are being loaded. Moreover,
Figure 5 omits code related to cache lookup and expiration,
which is explicit in Figure 6a.

1 var cache = {};
2 let lookup = new LiftedArrow(key => {
3 if (key in cache && !isExpired(cache[key].time)
4 return cache[key].value;
5 throw key;
6 });
7

8 let store = new LiftedArrow((key, value) => {
9 cache[key] = {'value': value, 'time': Date.now()};

10 });
11

12 let ajax = new AjaxArrow((query, page) => {
13 'url': '/search?q=${query}&page=${page}'
14 });

15 let extractPrev = new LiftedArrow(x => x.prev);
16 let extractNext = new LiftedArrow(x => x.next);
17 let extractQuery = new LiftedArrow(x => x.query);
18 let extractResults = new LiftedArrow(x => x.results);
19 let getVal = new LiftedArrow((elem, ev) => $(elem).val());
20

21 let handle = new LiftedArrow(x => {
22 $('#results')
23 .empty()
24 .append(x.map(t => $('').text(t)));
25 });

(a) Caching and and Ajax definitions. (b) Data-specific function definitions.

26 // Fetch a value (by key) from cache, or populate cache with value from arr
27 let makeCached = arr => lookup.catch(arr.carry().seq(store.remember()).nth(2));
28

29 // Replace arr in composition above with call to remote server
30 let cachedAjax = makeCached(ajax);
31

32 // Build an arrow that runs `main`, but also attempts to execute `task` first if main
33 // is too 'slow' to run. The `task` will be canceled if `main` makes progress.
34 let runFirstIfPossible = (task, main) => main.any(task.noemit().remember().seq(main));
35

36 function disableWhileLoading(a) {
37 let enable = new LiftedArrow(() => $('.paging-control').removeClass('disabled'));
38 let disable = new LiftedArrow(() => $('.paging-control').addClass('disabled'));
39

40 // Disable the paging buttons while the arrow `a` is running
41 return Arrow.seq([disable.remember(), a, enable.remember()]);
42 }
43

44 let paging = Arrow.fix(a => Arrow.seq([
45 // Fetch current page of data
46 disableWhileLoading(cachedAjax),
47

48 // Handle current page's data and extract prev/next pagination cursors
49 Arrow.fanout([
50 Arrow.fanout([extractQuery, extractPrev]),
51 Arrow.fanout([extractQuery, extractNext]),
52 extractResults.seq(handle),
53]),
54

55 runFirstIfPossible(
56 // Attempt to prefetch next page of results, but cancel if the next arrow
57 // makes progress before we get a result.
58 Arrow.seq([new NthArrow(2), cachedAjax]),
59

60 // Wait until the user clicks a pagination button. Each click will end up
61 // passing a different pagination cursor recursively back into the arrow.
62 Arrow.any([
63 new ElemArrow('#prev').seq(new EventArrow('click')).remember().nth(1),
64 new ElemArrow('#next').seq(new EventArrow('click')).remember().nth(2),
65])
66),
67

68 a,
69]));
70

71 let filtering = Arrow.fix(a => Arrow.seq([
72 new ElemArrow('#filter'),
73 Arrow.seq([
74 // Get the current filter value and the first page (value 1)
75 Arrow.fanout([getVal, new NumericArrow(1)]),
76

77 // Page the current results until the user changes the filter
78 Arrow.any([new Delay(400).seq(paging).noemit(), a])
79]).on('keyup')
80]));
81

82 filtering.run();

(c) Complete composition of arrows.

Fig. 6: The relevant source of the application - omitted code is trivial.

C. Performance Comparison

We measured non-idle performance of both the implemen-
tation using Arrows and using only callbacks. Averaged over
100 clicks of pagination controls (30 of which triggered a
cache hit, 70 of which triggered a cache miss), the number
of requests and time spent in-code was nearly identical. We
find that using Arrows in this application added no measurable
runtime overhead.

IV. TYPE SYSTEM

The Arrows library comes with a pluggable type system
which infers the type of an arrow during its composition. If
an illegal composition is detected, it throws a type error. This,
in many cases, can detect illegal compositions, which seem
correct at first glance but have subtle problems at runtime.
Often times, an illegal composition fails at an unexpected
source location, making it difficult to track the true source
of the bug.

In this type system, each function lifted into an arrow
annotates the type it expects as input, the type it produces
as output, a set of subtyping constraints, and a set of types
of the exception values that can be thrown. For example, the
type of the lookup arrow defined in Figure 6a is annotated
as ∀α, β. α β \ (∅, {α}) where the input of the arrow is
a type variable α and its output is a type variable β. The pair
(∅, {α}) represents an empty constraint set and the singleton
exception type α.

Only the function definition of a lifted arrow requires
a type annotation. The type of a composite arrow can be
inferred from its components. For example, the inferred type
of cachedAjax, defined in Figure 6c, is

(String , Number) {prev : Number , next : Number ,

query : String , results : [τ]} \ (∅, {AjaxError})

where τ is the type of the value returned by the remote server,
which should be annotated in the ajax arrow. Notice that all
type variables have been unified with concrete values and that
a value of type AjaxError can now be thrown.

Inferring the type of combinators does come with a cost.
The time to bootstrap between the two client implementations
discussed above differs slightly. The callback-only version was
ready to accept the first user event within 172ms, where the
Arrows version required 207ms. However, we find this app to
be of non-trivial size and a one-time cost of 35ms at startup,
even in a production environment, is a negligible.

Very large applications or applications which require a very
responsive startup may find this additional cost unacceptable.
In these cases, type inference can be enabled only during
development to detect type errors and be disabled in the
deployed version.

V. RELATED WORK

Arrows [5] are a generalization of monads [6], which enable
functional composition of programs to support side effects
such as exception handling, concurrency, and continuation
without sacrificing referential transparency.

Our work is inspired by Arrowlets [4], a JavaScript library
that combines arrows and continuation-passing style to support
event-driven web development. However, it is difficult to
locate the source of errors in Arrowlet programs due to the
indirection of arrow constructors and combinators. Our arrow
library overcame this weakness by adding a type inference
component to check typing errors at arrow composition time.
We also support a more general set of arrow constructors
and combinators and include error-handling capability that
subsumes the semantics of ES6 Promises.

Other than control-flow oriented solutions like Arrows, there
are also data-flow oriented solutions such as Functional Reac-
tive Programming (FRP) [7]. Notable JavaScript applications
of FRP include Elm [8] and Flapjax [9]. Other related systems
include Promises, which we explored earlier, and Factors [10],
which defines factor abstraction, a state of a program, that can
be queried either synchronously or asynchronously.

VI. CONCLUSION

In this paper, we demonstrated how Arrows could be easily
integrated into a real-world web application. The flexibility it
provides in terms of code maintenance and readability could
be a big factor for companies that are interested in creating
large scale web applications. Additionally, the optional type
checking functionality protects against error-prone composi-
tions. The ease of adding additional features make Arrows an
ideal candidate for enterprise applications.

For future work, we plan on expanding the set of appli-
cations which uses Arrows. This will allow a richer set of
data to use for benchmarks (overhead of arrows and their
type inference on startup and runtime) and usability studies
(readability of solutions, discoverability of the API, benefit of
discovering possible runtime errors instead as typing errors).

REFERENCES

[1] E. Fritz, T. Zhao, Type inference of asynchronous arrows in JavaScript,
Reactive and Event-based Languages & Systems (2015).

[2] G. J. Sussman, G. L. Steele Jr, Scheme: A interpreter for extended
lambda calculus, Higher-Order and Symbolic Computation 11 (1998)
405–439.

[3] K. Gallaba, A. Mesbah, I. Beschastnikh, Don’t call us, we’ll call
you: Characterizing callbacks in javascript, in: Empirical Software
Engineering and Measurement (ESEM), 2015 ACM/IEEE International
Symposium on, IEEE, 2015, pp. 1–10.

[4] Y. P. Khoo, M. Hicks, J. S. Foster, V. Sazawal, Directing JavaScript with
arrows, in: Proceedings of the 5th Symposium on Dynamic Languages,
DLS ’09, ACM, New York, NY, USA, 2009, pp. 49–58.

[5] J. Hughes, Generalising monads to arrows, Science of Computer Pro-
gramming 37 (1998) 67–111.

[6] P. Wadler, The essence of functional programming, in: Proceedings
of the 19th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, ACM, 1992, pp. 1–14.

[7] Z. Wan, P. Hudak, Functional reactive programming from first principles,
in: ACM SIGPLAN Notices, Vol. 35, ACM, 2000, pp. 242–252.

[8] E. Czaplicki, S. Chong, Asynchronous functional reactive programming
for guis, in: ACM SIGPLAN Notices, Vol. 48, ACM, 2013, pp. 411–422.

[9] L. A. Meyerovich, A. Guha, J. Baskin, G. H. Cooper, M. Greenberg,
A. Bromfield, S. Krishnamurthi, Flapjax: a programming language for
ajax applications, in: ACM SIGPLAN Notices, Vol. 44, ACM, 2009, pp.
1–20.

[10] S. K. Muller, W. A. Duff, U. A. Acar, Practical abstractions for concur-
rent interactive programming, Tech. rep., Carnegie Mellon University
(2015).

	Introduction
	Event Programming, Promises, and Arrows
	Event Programming & The Event Loop
	Promises
	Arrows

	Application & Implementation
	Callback Client Implementation
	Client Implementation using Arrows
	Performance Comparison

	Type System
	Related Work
	Conclusion
	References

