
Type Inference for Scripting languages with Implicit Extension

Tian Zhao
University of Wisconsin – Milwaukee

tzhao@uwm.edu

Abstract
This paper presents a constraint-based type inference algorithm for
a subset of the JavaScript language. The goal is to prevent accessing
undefined members of objects. We define a type system that allows
explicit extension of objects through add operation and implicit
extension through method calls. We prove that a program is typable
if and only if we can infer its types. We also extend the type system
to allow strong updates and unrestricted extensions to new objects.

1. Introduction
JavaScript is a widely used scripting languages for Web applica-
tions. It has some flexible language features such as method up-
date and method/field additions. These features are also potential
sources of runtime errors such as accessing undefined members of
objects. Since JavaScript is a dynamic language, it cannot statically
determine which members have been added to an object at each
program point and programmers have to rely on documentation or
other tools to avoid these types of mistakes.

Past research have proposed the use of static types to keep
track of members added to objects with some design variations.
One design choice, taken by Anderson et al.’s type inference algo-
rithm [4], is to use flow-sensitive object types that distinguish two
types of object members: definite members (ones that have been
defined) and potential members (ones that may be defined later).
Only definite members may be accessed while potential members
may become definite after object extensions. This design allows
objects be extended at any time. Another design choice, seen in
Recency Types [10] and Bono and Fisher’s calculus with object ex-
tensions [5], is to use two sets of object types: one set allows object
extension while the other set does not. The idea is to model objects
at initialization stage using extensible object types and after that,
the objects are given fixed types. With this design, the extensions
made to objects at initialization stage are not restricted by the initial
types of the objects. To support this behavior and also allow objects
be extended after initialization stage, one can also have features of
both approaches above in one type system [7].

In this paper, we present a type system and a type inference
algorithm based on the last design choice to have two sets of
object types. One set consists of singleton types assigned to new
objects in local scope to allow strong updates where members of
an object can be replaced by values of different types and to permit
unrestricted extensions. The other set consists of flow-sensitive obj-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright c© ACM [to be supplied]. . . $10.00

types that distinguish definite and potential members. We allow a
variable of a singleton type and a variable of an obj-type to point
to the same object though the two types must be compatible so that
their common members cannot have strong updates. However, the
variable of the singleton type can still have strong update on other
members and have unrestricted extensions.

Our type system keeps track of members added to an object by
both explicit method/field add operation and self-inflicted exten-
sion [7], which is the extension that an object made to itself upon
receiving a message. We do not model implicit extension of objects
through function parameters though this type of extensions can be
treated in a way similar to the extensions to self.

1.1 Motivating examples

1 function Form(a) {
2 this.id = a;
3 this.set = setter;
4 }
5 function setter(b) {
6 this.handle = b;
7 return 0;
8 }
9 function handler(c) {

10 // do something
11 return 0;
12 }
13 // main
14 x = new Form (1);
15 z = x.handle (1); // error
16 y = x.set(handler);
17 z = x.handle (1); // OK

Figure 1. Example of self-inflected extension

Figure 1 is an example of self-inflicted extension, where Form
is a constructor function that return new objects with a field id
and a method set, which adds a handle method to the current
object. In the main program, we create a Form object and call its
handle method before and after calling its set method. When
handle is called at line 15, there should be a runtime error since
handle is not yet defined in the Form object x. However, it is OK
to call handle for the 2nd time (line 17) since set has added this
method to x. Anderson’s algorithm [4] does not allow this call
since it only considers members added to objects by explicit add
operations while handle is added indirectly by the method set.
Our type system keeps track of both types of object extensions.
Consequently, it can determine that the variable x at line 17 refers
to an object with the method handle.

We also consider an extension to our type system to support
strong updates to new objects where an object’s member may be
replaced by a value of a different type. Since obj-types are not

extensible, object extensions are limited by the potential members
in the object types. Also, strong updates to definite members are not
allowed. This is not a problem for an empty object since we can
give it a type with any potential members. However, new objects
instantiated from a constructor function have the same type – the
return type of the constructor function, so that potential extensions
made to these objects are limited by this type – the types of the
definite members cannot be changed. JavaScript allows constructor
functions to return any objects though, in many cases, the expected
behavior of a constructor function is to return a new object each
time it is called through the new operator. For other cases, one
can make an ordinary function call instead. Therefore, we only
consider this behavior of the constructor functions. We extend our
type system with a kind of singleton types to support strong updates
and unrestricted extensions to new objects.

1 function F(x) {
2 this.a = 1;
3 this.b = "one";
4 }
5 x1 = new F(0);
6 x2 = new F(0);
7 x1.b = true;
8 x1.c = 2;
9 x2.c = false;

Figure 2. Strong updates and unrestricted extensions to new ob-
jects

For example, the program in Figure 2 creates two F objects x1
and x2, and extends x1 and x2 with field c of integer type and
boolean type respectively. Also, the member b of object x1 received
a strong update – its type is changed from string to boolean. We can
allow this by assigning singleton types to x1 and x2.

In summary, we make the following contributions:

• a sound and complete type inference algorithm for a small sub-
set of JavaScript language to keep track of new members added
to objects through add operation and self-inflicted extensions.

• an extension to our inference algorithm to allow strong updates
and unrestricted extensions to new objects

In the rest of paper, we first give an informal discussion of our
approach in Section 2. Next, we formalize a type system on a small
subset of JavaScript to support self-inflicted extension. We present
the syntax, type rules, and operational semantics in Section 3. We
explain the details of type inference algorithm and its correctness in
Section 4. We explain the extension to add singleton types to new
objects in Section 5.

2. Approach
We follow the design of Anderson’s type system [4] by labeling
each member of an object type as potential or definite to indicate
whether the member is possibly defined or definitely exists respec-
tively. The labels are inferred along with the types of a program.
The inferred type of a function also includes a (possibly empty) set
of names of members that are added to the receiver object during a
call to the function.

Consider the example in Figure 1, the type of the variable x at
line 14 can be written as

tx = [id : (int, •), set : (tsetter, •), handle : (thandler, ◦)]
where • labels definite members while ◦ labels potential members.
Each distinct object type and function type has a name and is
defined with an equation, where the right-hand-side shows the

structure of the type. Each type name may be referenced in the
definitions of some other types.

We support width subtyping of object types but not depth sub-
typing. For example, type tx is a subtype of t where t = [set :
(tsetter, •)]. Also, it is safe to give an object with a member m a
type that labels m as potential. For example, t is a subtype of t′

where t′ = [set : (tsetter, ◦)].
Notice that the handle method of tx is a potential method

only and it is illegal to call methods with such a label (e.g. line
15 of Figure 1). A potential member becomes definite after an
assignment. The function call at Line 16 adds the handle method
to x. Therefore, the type of x at line 17 is

t′x = [id : (int, •), set : (tsetter, •), handle : (thandler, •)].
Hence, it is safe to call handle then.

The method call x.set(handler) updates the receiver object x
with the function handler. To obtain the information about which
members are added to the receiver object, we define function types
in the form of

(t0,M)× τ1 → τ2

where t0 is the type of this pointer, τ1 and τ2 are parameter and
return type respectively. The meta variable τ ranges over object
types, function types, and primitive types such as int, and a top
type. M is a set of names of the members that are added to the re-
ceiver object by the function. The type of the function setHandle
is then

tsetter = (t0, {handle})× thandler → int

where t0 and thandle are defined as

t0 = [handle : (thandler, ◦)]

thandler = (t′0, ∅)× int→ int

t′0 = [] .

The set M of a function type also includes members added by
self-inflicted extensions within the function. That is, if a function f
of type (t0,M)× τ1 → τ2 calls function g of the type (t′0,M

′)×
τ ′1 → τ2 on this pointer, then M must include M ′.

To allow strong updates and unrestricted extensions as in Fig-
ure 2, we define a form of singleton types ς , where we label object
members that can receive strong update with ∗. As shown below, ςF
is the return type of the constructor F and ςx1 and ςx2 are the types
of x1 and x2 after the last assignment.

ςF = @[a : (int, ∗), b : (string, ∗)]

ςx1 = @[a : (int, ∗), b : (bool, ∗), c : (int, ∗)]

ςx2 = @[a : (int, ∗), b : (string, ∗), c : (bool, ∗)]
The singleton types are only assigned to new objects and local
variables that reference these objects. For simplicity, the types of
object members, function parameters, and function return types
(other than the constructor function’s return type) are obj-types.
We keep track of the aliases of singleton types within local scope
and they receive obj-types once they are assigned to some objects’
fields or passed as parameters to other functions. The singleton type
of an object has to be updated once the object is assigned to some
variable of obj-types.

Consider the following example where the variable x is passed
to function f.

1 function f(y) {
2 y.a = 1;
3 return y;
4 }
5 x = new F(0);

6 z = f(x);
7 x.b = true;
8 x.c = 2;

If the type of x starts with ςx, then it becomes ς ′x after the call.

ςx = @[a : (int, ∗), b : (string, ∗)],
ς ′x = @[a : (int, •), b : (string, ∗)]

In effect, the type system has to change the label of x.a so that
it can no longer receive strong updates. Still, variable x can have
strong updates on its member b and be extended with additional
members so that its type eventually becomes

ς ′′x = @[a : (int, •), b : (bool, ∗), c : (int, ∗)].

A singleton type may also have potential members as well.
Suppose that we change the function f in the previous example
so that it extends its parameter y with a c member.

1 function f(y) {
2 y.c = 1;
3 return y;
4 }
5 x = new F(0);
6 z = f(x);
7 x.c = 2;

The type of x before and after the call f(x) are:

ςx = @[a : (int, ∗), b : (string, ∗)],
ς ′x = @[a : (int, •), b : (string, ∗), c : (int, ◦)].

Notice that ς ′x now has a potential member c with int type. Any
subsequent update to the c member of x has to be integers.

Finally, the following example illustrates the interaction be-
tween singleton type and implicit extensions.

1 function G(i) {
2 this.a = i;
3 this.m = g;
4 }
5 function g(j) {
6 this.b = j;
7 return this;
8 }
9 x = new G(0);

10 y = x.m(1);

The variable x’s type on line 9 is

ςx = @[a : (int, ∗),m : (tg, ∗)],

where tg = (t, {b}) × int → t′, t = [b : (int, ◦)], and t′ = [b :
(int, •)]. After line 10, the type of x becomes

ς ′x = @[a : (int, ∗),m : (tg, ∗), b : (int, •)]

The variable x is extended with a definite member b through im-
plicit extension. In fact, y is an alias of x but y has an obj-type
since we don’t track singleton type across function calls.

3. Formalization
In this section, we present a formalization of our type system.
We explain the syntax, type rules, and the operational semantics,
and prove the soundness of the type system. The details of type
inference are covered in Section 4.

This formalization is for self-inflicted extension only. Additions
to the type system are discussed in Section 5.

3.1 Syntax
We select a small subset of the JavaScript language that includes
member select, member update/add, method calls, and object cre-
ation with syntax shown in Figure 3. We distinguish constructor
function and regular function with the naming convention that con-
structor function name starts with an upper case letter. We do not
model function calls since its behavior is similar to that of method
calls when the receiver object is empty. In fact, regular function
calls in JavaScript will substitute this pointer of the called func-
tion with the global object [6].

The syntax of a function body consists of a sequence of state-
ments and a return statement. For simplicity, we write object cre-
ation. member select, and method call in the form of assignments
and each expression is assigned to a variable so that there is no
nested expressions in the statements. The body of a constructor
function has a sequence of statements but no return statement since
each time a constructor function is called through new operator,
this pointer of the function is given a new empty object and after
the body is executed, this object is returned.

The meta variable f ranges over the names of regular functions,
F ranges over the names of constructor functions, and m ranges
over member names. A program P consists of a one or more
function/constructor definitions and a main statement s.

P ::= Fni
i∈1..n s Program

Fn ::= function f(x){s; return z} function
| function F (x){s} constructor

s ::= statements
var x variable declaration

| x = z assignment
| x = new F (z) new object
| x = y.m member select
| x = y.m(z) method call
| y.m = z member update/add
| s; s′ sequence

y ::= x variables
| this self reference

z ::= y
| f function identifier
| n integer

Figure 3. Syntax

3.2 Static semantics
We have four kinds of types: function type, object type, integer
type, and a top type and the meta variable τ ranges over them.

τ ::= t name of function and object types
| top super type of function and object types
| int integer

The variable t ranges over the names of function and object types,
which are defined by equations of the form:

t = [mi : (τi, ψi)
i∈i..n] object type

t = (t0,M)× τ1 → τ2 function type

ψ ::= ◦ potential
| • definite

The meta variable ψ ranges over the label ◦ and •, which indicates
whether a member is potentially or definitely present. In a function
type (t0,M) × τ1 → τ2, t0 is the type of this, which is always
an object type while the parameter and return type τ1 and τ2 can be
any types, and M represents a set of member names.

Subtyping The subtyping relation of types is defined as follows.

• Each object/function type is a subtype of top. Subtyping rela-
tion is reflexive and transitive.

t ≤ top τ ≤ τ
τ ≤ τ ′ τ ′ ≤ τ ′′

τ ≤ τ ′′

• A function type is a subtype of another one if they are struc-
turally equivalent. For simplicity, we do not have covariant re-
turn type and contravariant parameter type for function types.

t = (t0,M)× τ1 → τ2 t′ = (t0,M)× τ1 → τ2

t ≤ t′

t = (t0,M)× τ1 → τ2

t ≤ (t0,M)× τ1 → τ2

• The expression t(m) returns the type information of memberm
in object type t if it is defined in t, otherwise, t(m) is undefined.

t = [. . .m : (τ, ψ) . . .]

t(m) = (τ, ψ)
t(m) = undef otherwise, where

undef is used here to denote undefined member of a type.
An object type t is a subtype of t′ if t has a superset of members
and the common members have the same types while their
labels follow a partial order defined as ψ ≤ ψ and • ≤ ◦.
∀m. t′(m) = (τ, ψ′)⇒ (t(m) = (τ, ψ) ∧ ψ ≤ ψ′)

t ≤ t′

We also define a subtyping relation below for the convenience
of stating typing rules.

t(m) = (τ, ψ) ψ ≤ ψ′

t ≤ [m : (τ, ψ′)]

• We define another subtyping relationship ≤M to represent the
member extensions of an object type so that t ≤M t′ iff t is the
same as t′ except that each member in M must be definite in t.

∀m 6∈M. t(m) = t′(m)

∀m ∈M. t(m) = (τ, •) ∧ t′(m) = (τ, ψ)

t ≤M t′

3.2.1 Type rules for functions and constructors
We use the symbol Γ to represent type environment that maps
variables, function/constructor names, and constants to their types.
Assume Γ(n) = int for any integer constant n. For any variable or
name of function/constructor in the domain of Γ, we define

Γ = [. . . z 7→ τ . . .]

Γ(z) = τ

In Rule (T-Fn), we also use Γ to map a distinguished variable l to
the set of members that are added to the receiver object during a
method call.

A judgment of the form Γ ` s ‖ Γ′ asserts that the statement
s is well-typed with the environment Γ and the execution of s will
result in a (possibly new) environment Γ′.

Figure 4 shows the typing rule for program and functions, where
a program P with environment Γ is well-typed if its functions, con-
structors, and main statement are well-typed with Γ. The environ-
ment for typing a program includes mapping of function and con-
structor to types.

A function f is well-typed given an environment Γ if we can
construct a new environment for the function body so that it is well-
typed. In particular, M is a set of member names. The set includes

the members of the receiver object that are added or updated during
a function call.

For a constructor function to be well-typed, the type of this
pointer before the execution of the constructor body must not have
any definite members since the constructor is always invoked with
an empty receiver object.

Γ ` Fni ∀i ∈ 1..n Γ ` s ‖ Γ′

Γ ` Fni∈1..n
i s ‖ Γ′

T-Prog

Γ(f) ≤ (t,M)× τ → τ ′

Γ′ = Γ[this 7→ t, x 7→ τ, l 7→ ∅] Γ′ ` s ‖ Γ′′

Γ′′(z) ≤ τ ′ M = Γ′′(l)

Γ ` function f(x){s; return z} T-Fn

Γ(F) = τ → t

Γ′ = Γ[this 7→ t0, x 7→ τ, l 7→ ∅] Γ′ ` s ‖ Γ′′

Γ′′(this) ≤ t def(t0) = ∅
Γ ` function F (x){s} T-Ctr

Figure 4. Typing rules for program, constructor, and function

Rule (T-Ctr) uses a helper function def(t) that returns the set of
names of definite members in an object type t.

def(t) = {m | t(m) = (τ, •)}

3.2.2 Type rules for statements
Type rules for statements are shown in Figure 5.

Rule (T-Dec) says that each variable declaration defines a new
variable not already in the domain of the type environment, where
dom is a function that returns the domain of a mapping. Once
a variable is declared, we assign a type to that variable in the
environment though the type may be changed later by assignments.

Rule (T-Upd) applies to the member update/add operation of the
form y.mj = z. We update the type of y so that its member mj

becomes definite (regardless of the original label of mj) after the
statement is executed.

Rule (T-New) uses the return type of the constructor function to
replace the type of the variable that the new object is assigned to.

Rule (T-Sel) requires the selected member to be definite, i.e.
with the label •.

Rule (T-Invk) also requires the called method to be definite and
the receiver object’s type to be a subtype of this pointer of the
called method. Also, if the called method adds a set of members
denoted by the set M to this, then we update the type of the
receiver object so that each method with name in M becomes
definite in the type of the receiver.

For statements of the form this.mj = z and x = this.mj(z),
Rule (T-Upd) and (T-Invk) also update the special variable l in the
type environment Γ.

For example, consider the following program fragment:

this.m1 = 1;
this.m2 = 2;
x = this.setter(3);

where the method setter adds the members m2 and m3 to this. If
before the execution of these statements, Γ(l) = ∅, then after they
are executed, Γ(l) = { m1, m2, m3 }.

3.3 Operational semantics
We define a big-step semantics for our language in Figure 6. First,
we give a few definitions used in the semantics.

x 6∈ dom(Γ)

Γ ` var x ‖ Γ[x 7→ τ]
T-Dec

Γ′ = Γ[x 7→ Γ(z)]

Γ ` x = z ‖ Γ′
T-Assn

Γ(y) = t t ≤ [mj : (τj , ◦)] Γ(z) ≤ τj
t′ ≤{mj} t Γ′ = Γ[y 7→ t′] y 6= this⇒ Γ′′ = Γ′

y = this⇒ Γ′′ = Γ′[l 7→ Γ(l) ∪ {mj}]
Γ ` y.mj = z ‖ Γ′′

T-Upd

Γ(F) = τ → t Γ(z) ≤ τ Γ′ = Γ[x 7→ t]

Γ ` x = new F (z) ‖ Γ′
T-New

Γ(y) ≤ [mj : (τj , •)] Γ′ = Γ[x 7→ τj]

Γ ` x = y.mj ‖ Γ′
T-Sel

Γ(y) ≤ [mj : (tj , •)] tj ≤ (t0,M)× τ1 → τ2

Γ(z) ≤ τ1 Γ(y) ≤ t0 t′ ≤M Γ(y)

Γ′ = Γ[y 7→ t′, x 7→ τ2] y 6= this⇒ Γ′′ = Γ′

y = this⇒ Γ′′ = Γ′[l 7→ Γ(l) ∪M]

Γ ` x = y.mj(z) ‖ Γ′′
T-Invk

Γ ` s ‖ Γ′ Γ′ ` s′ ‖ Γ′′

Γ ` s; s′ ‖ Γ′′
T-Seq

Figure 5. Type rules for statements

A heap H is a mapping from object labels ι to object values o,
which maps member names to values. A value v is either an object
label, a function name, an integer, or null.

v ::= ι | f | n | null
o ::= {mi 7→ vi

i∈1..n}
H ::= {ιi 7→ oi

i∈1..n′
}

We can extract the object value from the heap through its label.

H = {. . . ι 7→ o . . .}
H(ι) = o

Similarly, we can select a member from an object value through
member name if the member is defined in the object.

o = {. . .m 7→ v . . .}
o(m) = v

Otherwise, o(m) = undef, which says m is undefined in o. Note
that undef is not the undefined property in JavaScript.

We use the symbol χ to represent a stack that maps local vari-
ables to to their values and maps a special variable ft to the the
declarations of functions and constructors.

χ ::= {yi 7→ vi
i∈1..n, ft 7→ Fnj∈1..n′

j }

We can find the value of a name y from the stack if it is in the
domain of the stack.

χ = {. . . y 7→ v . . .}
χ(y) = v

Also, χ(n) = n for any integer n and χ(f) = f for any function
name f . If y is not defined in the domain of χ, then χ(y) = undef.
Moreover, lookup(f, Fni∈1..n

i) = Fnj if Fnj is the declaration

P = Fni∈1..n
i s χ′ = {ft 7→ Fni∈1..n

i }
∅, χ′, s; H,χ

∅, ∅, P ; H,χ
R-Prog

x 6∈ dom(χ)

H,χ, var x; H,χ[x 7→ null]
R-Dec

lookup(F, χ(ft)) = function F (x′){s}
χ′ = {this 7→ ι, x′ 7→ χ(z), ft 7→ χ(ft)}
ι 6∈ dom(H) H[ι 7→ []], χ′, s; H ′, χ′′

H,χ, x = new F (z) ; H ′, χ[x 7→ ι]
R-New

H(χ(y))(mj) = vj

H,χ, x = y.mj ; H,χ[x 7→ vj]
R-Sel

H(χ(y))(mj) = f

lookup(f, χ(ft)) = function f(x′){s; return z′; }
χ′ = {this 7→ χ(y), x′ 7→ χ(z), ft 7→ χ(ft)}

H,χ′, s; H ′, χ′′

H,χ, x = y.mj(z) ; H ′, χ[x 7→ χ′′(z′)]
R-Invk

H(χ(y)) = o H ′ = H(χ(y) 7→ o[mj 7→ χ(z)])

H,χ, y.mj = z ; H ′, χ
R-Upd

H,χ, x = z ; H,χ[x 7→ χ(z)] R-Asn

H,χ, s; H ′, χ′ H ′, χ′, s′ ; H ′′, χ′′

H,χ, s; s′ ; H ′′, χ′′
R-Seq

Figure 6. Operational semantics where the reduction rules of state-
ments assume an implicit function table FT that maps each func-
tion/constructor name to its declaration.

of the function f and lookup(F, Fni∈1..n
i) = Fnj if Fnj is the

declaration of the constructor F , where j ∈ 1..n.
The reduction of a statement is written in form of H,χ, s ;

H ′, χ′, which means that the execution of a statement s given
the configuration of a heap H and a stack χ results in a new
configuration H ′, χ′.

The reduction rules are mostly straightforward and they do not
consider runtime errors, which will be defined next. A statement s
can write to a variable x not defined in χ and after the execution of
s, χ is extended with the definition of x.

3.3.1 Runtime errors
Since big step semantics cannot distinguish a program stuck with
runtime error from divergence, we define rules to propagate run-
time errors during the computation. The first type of error is due to
accessing an undefined member of an object or using an undefined
function/constructor name. We use a special configuration error to
denote the result of the computation as shown in Figure 12. We will
show that a well-typed program will not result in error. The second
type of error is due to deferencing a null pointer, which is repre-
sented by a special configuration nullPtrEx as shown in Figure 13.
We tolerate this type of error.

3.4 Type soundness
For type soundness proof, we define an invariant that holds in each
reduction step. The invariant is written as Σ,Γ ` H,χ, which
means that the heap H and stack χ are well-formed under the

environment Σ and Γ, where Σ maps object labels to their types
– Σ = {ιi 7→ ti

i∈1..n}.
The judgment Σ,Γ ` v : τ asserts that the value v is well-typed

with the type τ .

Σ,Γ ` n : int Σ,Γ ` null : t
Σ(ι) ≤ t

Σ,Γ ` ι : t

Γ(f) ≤ t
Σ,Γ ` f : t

For an object to be well-typed, each of the object’s member
value must be well-typed and it must be a definite member in the
object’s type. The judgment Σ,Γ ` o : t asserts that the object o is
well-typed with the type t.

∀m. t(m) = (τ, •)⇒ Σ,Γ ` o(m) : τ

Σ,Γ ` o : t

Using the above definitions, we define the program invariant as:

∀ι. ι ∈ dom(Σ)⇔ ι ∈ dom(H)
∀y. y ∈ dom(Γ)⇔ y ∈ dom(χ)
∀ι ∈ dom(H). Σ,Γ ` H(ι) : Σ(ι)

∀y ∈ dom(χ). Σ,Γ ` χ(y) : Γ(y) ∀Fn ∈ χ(ft). Γinit ` Fn
Σ,Γ ` H,χ

The judgment Σ,Γ ` H,χ says that the heap H and stack χ are
well-formed with respect to the environment Σ and Γ. For this in-
variant to hold, the domains of H and Σ must be the same and the
domains of χ and Γ have the same set of variables; also, each object
inH and each variable in χmust be well-typed. Each function/con-
structor declaration in χ is well-typed with the environment Γinit,
which is defined as the environment that maps function/constructor
names to their types.

From the typing rules, we can show that if a well-typed function
f has the type (t,M) × τ1 → τ2, then M correctly identified
the added (or updated) members of the receiver object. Based
on this result, we can show that the execution of a well-typed
statement cannot lead to errors caused by accessing undefined
object members or functions. Also, the execution of a well-typed
statement will result in a well-formed heap and stack.

Lemma 3.1. If Σ,Γ ` H,χ and Γ ` s ‖ Γ′, then H,χ, s 6;
error, and ifH,χ, s; H ′, χ′, then ∃Σ′ such that Σ′,Γ′ ` H ′, χ′.

Based on Lemma 3.1 (the proof is omitted), we can conclude
that well-typed programs will not lead to errors caused by accessing
undefined members.

Theorem 3.2 (Type Soundness). If Γ ` P ‖ Γ′, then ∅, ∅, P 6;
error and if ∅, ∅, P ; H,χ, then ∃ Σ such that Σ,Γ′ ` H,χ.

4. Type Inference
The type inference algorithm includes three steps:

1. generate type constraints from a program,

2. apply closure rules to the constraint set until it is closed under
the rules,

3. solve the closed constraint set.

The first three rules in Figure 7 generate constraints from pro-
grams, functions, and constructors. The judgment E `inf P | C
generates a set of constraints C from a program P based on the ini-
tial environment E, where E maps function and constructor names
to distinct type variables. Likewise, the judgment E `inf Fn | C
generates a set of constraints C from a function or constructor dec-
laration Fn based on the environment E.

Moreover, the variable M in Figure 7 corresponds to a set of
member names and for each constructor function F , we create
a unique type variable VF for the initial type of this pointer.

E `inf Fni | Ci ∀i ∈ 1..n E `inf s ‖ E′ | C0
E `inf Fni∈1..n

i s |
⋃
i∈0..n Ci

Vthis, Varg , Vres ,M fresh

E′ = E[x 7→ Varg , this 7→ Vthis, l 7→ ∅] E′ `inf s ‖ E′′ | C′

C′′ = C′ ∪ {M = E′′(l), E′′(z) ≤ Vres , Vthis ≤ []}
C = C′′ ∪ {E(f) ≤ (Vthis,M)× Varg → Vres}

E `inf function f(x){s; return z} | C

E′ = E[x 7→ Varg , this 7→ VF , l 7→ ∅] E′ `inf s ‖ E′′ | C′

E(F) = Varg → Vres C = C′ ∪ {VF ≤ [], E′′(this) ≤ Vres}
E `inf function F (x){s} | C

V fresh E′ = E[x 7→ V]

E `inf var x ‖ E′ | ∅

E `inf x = z ‖ E[x 7→ E(z)] | ∅

Vy.m, Vy,M fresh E′ = E[y 7→ Vy] y 6= this⇒ E′′ = E′

y = this⇒ E′′ = E′[l 7→ E(l) ∪M]

C = {E(y) ≤ [m : (Vy.m, ◦)], E(z) ≤ Vy.m, Vy ≤M E(y),m ∈M}
E `inf y.m = z ‖ E′′ | C

Vy.m fresh C = {E(y) ≤ [m : (Vy.m, •)]} E′ = E[x 7→ Vy.m]

E `inf x = y.m ‖ E′ | C

Vy.m, Vy, Vthis, Varg , Vres ,M fresh E′ = E[y 7→ Vy, x 7→ Vres]

C = {E(y) ≤ [m : (Vy.m, •)], Vy.m ≤ (Vthis,M)× Varg → Vres ,

E(z) ≤ Varg , Vy ≤M E(y), E(y) ≤ Vthis}
y 6= this⇒ E′′ = E′

y = this⇒ E′′ = E′[l 7→ E(l) ∪M]

E `inf x = y.m(z) ‖ E′′ | C

E(F) = Varg → Vres C = {E(z) ≤ Varg} E′ = E[x 7→ Vres]

E `inf x = new F (z) ‖ E′ | C

E `inf s ‖ E′ | C E′ `inf s′ ‖ E′′ | C′

E `inf s; s′ ‖ E′′ | C ∪ C′

Figure 7. Inference rules to generate constraints from a program

The inference rules make sure that each variable in the generated
constraint set is unique.

The rest of the rules in Figure 7 generate type constraints from
statements. Each judgment of the inference rule for statements is in
the form of:

E `inf s ‖ E′ | C

which generates a set of constraints C from a statement s with
initial environment E and produces another environment E′. The
environment E maps integers to int type, maps variables, function
names to type variables, and constructor names to types of the form
V → V ′, and it maps a special variable l toN = ∅ |

⋃
i∈1..nMi.

l is added to the environment in the inference rule for functions and
it is initially mapped to ∅ and may later be mapped to a union of set
variables of the form ∅ ∪M1 ∪ . . . ∪Mn. To simplify notation,
we write ∅ ∪M1 ∪ . . . ∪Mn asM1 ∪ . . . ∪Mn.

E(n) = int
E = [. . . F 7→ V → V ′ . . .]

E(F) = V → V ′

E = [. . . z 7→ V . . .]

E(z) = V

E = [. . . l 7→ N . . .]

E(l) = N
After generating type constraints, we have a set of constraints

of the following format:

int ≤ V V ≤ (V0,M)× V1 → V2

V ≤ [] V ≤ [m : (V ′, ψ)]

V ≤ V ′ V ≤M V ′

m ∈M M = N

whereN = ∅ |
⋃
i∈1..nMi.

4.1 Closure rules
Closure rules are shown in Figure 8, where the meta variables U
and W are defined as follows:

U ::= int | V
W ::= U | [] | [m : (V, ψ)] | (V,M)× V1 → V2

Rule 1 applies transitive closure to subtyping relations. Rule 2
and 3 ensure that int can only be subtype of itself. Rule 4 and 5
check constraints on object and function types with common lower
bounds. Rule 6 propagates set membership forM variables. Note
that in Rule 6, the constraintM =

⋃
i∈1..nMi can also represent

constraint of the form M = M1 when n = 1. Rule 7, 8, and 9
apply closure rules to member extension constraints. Rule 10 ap-
plies closure rules 1–9 to a constraint set to obtain a possibly larger
constraint set. Rule 11 adds additional constraints to a constraint
set that is closed with respect to Rule 10.

4.2 Constraint satisfiability
After applying closure rules, we obtain constraints of the form:

U ≤W V ≤M V ′

m ∈M M = N .
A solution S to a constraint set C maps each V in C to int, top,

or t, maps eachM in C to set of member names, and

S(int) = int

S([m : (V, ψ)]) = [m : (S(V), ψ)]

S((V0,M)× V1 → V2) = (S(V0), S(M))× S(V1)→ S(V2)

S(∅) = ∅ S([]) = []

S(
⋃
i∈1..nMi) =

⋃
i∈1..n S(Mi)

We say that a constraint set C is satisfiable if there exists a solution
S to C such that

U ≤W ∈ C ⇒ S(U) ≤ S(W)

V ≤M V ′ ∈ C ⇒ S(V) ≤S(M) S(V ′)

{m ∈M} ⊆ C ⇒ m ∈ S(M)

M = N ∈ C ⇒ S(M) = S(N)

VF appears in C ⇒ def(S(VF)) = ∅

4.3 Constraint closure
Before solving a constraint set C, we will compute its closure.

Definition A constraint set C is AClosed if C −→A C. Let
AClosure(C) = C′ if C −→∗A C′ and C′ −→A C′, where −→A is
defined by Rule 10 and −→∗A is a transitive closure of −→A.

Because the closure rules do not add any variables to the set,
the closure of a constraint set has fixed number of variables and is
bounded in size. Since −→A is monotone and increasing, we can
always find AClosure of a constraint set.

Definition A constraint set C is Closed if C −→B C. We define
Closure(C) = C′ if AClosure(C) −→∗B C′ and C′ −→B C′, where
−→B is defined by Rule 11 and −→∗B is a transitive closure of
−→B .

If C −→B C′, then C′ remains AClosed because the constraints
that may be added by Rule 11 are only different from those added
by Rule 7 in the member labels. Since Rule 1–9 do not depend on
labels, the new constraints added by Rule 11 cannot cause any of
Rule 1–9 be applied again. Therefore, Closure(C) is also AClosed.
Since a constraint set of finite variables is bounded in size and
−→B is monotone and increasing, we can always find the Closure
of a constraint set C.

4.4 Constraint consistency
Before we solve a constraint set, we need to make sure it is consis-
tent. We will show later that a consistent constraint set is satisfiable.

Definition A constraint set is consistent if it is not inconsistent. A
constraint set C is inconsistent if one of the followings is true:

1. {V ≤ int, V ≤ []} ⊆ C
2. {V ≤ int, V ≤ [m : (V, ψ)]} ⊆ C
3. {V ≤ int, V ≤ (V0,M)× V1 → V2} ⊆ C
4. {V ≤ [], V ≤ (V0,M)× V1 → V2} ⊆ C
5. {V ≤ [m : (V, ψ)], V ≤ (V0,M)× V1 → V2} ⊆ C
6. {m ∈ M, M =

⋃
i∈1..nMi} ⊆ C and {m ∈ Mi} 6⊆ C,

∀i ∈ 1..n,
7. VF ≤ [m : (V, •)] ∈ C.

The first three rules of inconsistency make sure that a type
variable cannot be both integer and an object type (or a function
type) at the same time. The fourth and fifth rules make sure a type
variable cannot be both an object type and a function type at the
same time. The sixth rule makes sure that there is no conflict in
solution to M variables. For example, if C is closed and {m ∈
M′,M =M′,M =

⋃
i∈1..nMi} ⊆ C then by Rule 6, m ∈ M

has to be in C and any solution S to C will have m ∈ S(M) but
we also want S(M) =

⋃
i∈1..n S(Mi). Thus, C is inconsistent if

it does not contain m ∈Mi for some i.
The last rule says that within a constructor function, the type of

this pointer cannot include a definite member since a constructor
function is always invoked with an empty object substituting this
and empty object’s type cannot have definite member. This is the
only rule that catches the errors of accessing undefined member.
Intuitively, member access on an object introduces constraint of
the form V ≤ [m : (V ′, •)]. If the member is not defined before
the access, then the closure rules will eventually generate VF ≤
[m : (V ′, •)], where VF represents the return type of the object’s
constructor, otherwise, only VF ≤ [m : (V ′, ◦)] will be generated.

4.5 Constraint solution
We first define a function UpperC(V) to obtain upper bound of a
type variable V in a constraint set C.

UpperC(V) = {W | (V ≤W) ∈ C}

Definition For a constraint set C, we define its solution S (written
as Solution(C)) as follows:

1. S(M) = {m | (m ∈M) ∈ C};
2. S(V) = int if int ∈ UpperC(V);

U ≤ V, V ≤W −→ U ≤W (1)

int ≤ V −→ V ≤ int (2)

V ≤ int −→ int ≤ V (3)

V ≤ [m : (V ′, ψ′)], V ≤ [m : (V ′′, ψ′′)] −→ V ′ ≤ V ′′, V ′′ ≤ V ′ (4)

V ≤ (V0,M)× V1 → V2

V ≤ (V ′0 ,M′)× V ′1 → V ′2
−→ V0 ≤ V ′0 , V ′0 ≤ V0, V1 ≤ V ′1 , V ′1 ≤ V1,

V2 ≤ V ′2 , V ′2 ≤ V2,M =M′,M′ =M (5)

m ∈Mj , j ∈ {1..n}, M =
⋃

i∈1..n

Mi −→ m ∈M (6)

V ≤M V ′, V ≤ [m : (V ′′, ψ)] −→ V ′ ≤ [m : (V ′′, ◦)] (7)

V ≤M V ′, V ′ ≤ [m : (V ′′, ψ)] −→ V ≤ [m : (V ′′, ψ)] (8)

V ≤M V ′,m ∈M, V ′ ≤ [m : (V ′′, ◦)] −→ V ≤ [m : (V ′′, •)] (9)

∀i ∈ 1..k. ci ∈ C c1, .., ck −→ c′1, .., c
′
n

C −→A C ∪ {c′1, .., c′n}
(10)

C −→A C {V ≤M V ′, V ≤ [m : (V0, •)], V ′′ ≤ V ′} ⊆ C {m ∈M} 6⊆ C
C −→B C ∪ {V ′ ≤ [m : (V0, •)], V ′′ ≤ [m : (V0, •)]}

(11)

Figure 8. Closure rules

3. S(V) = top, if UpperC(V) is empty or only has variables;
4. For any other V and V ′, S(V) = S(V ′) = t iff {V ≤
V ′, V ′ ≤ V } ⊆ C, and
(a) if (V0,M)× V1 → V2 ∈ UpperC(V), then t is defined by

t = (S(V0), S(M))× S(V1)→ S(V2);
(b) if [] or [m :] ∈ UpperC(V), then t = [mi : (τi, ψi)

i∈N],
where ∀i ∈ N , τi = S(V ′) for some V ′ such that [mi :
(V ′,)] ∈ UpperC(V), and ψi = • if ∃[mi : (, •)] ∈
UpperC(V) and ψi = ◦ otherwise.

To find a solution S that satisfies a constraint set C, we first find
the variables that must have int type and for other variables that
cannot be object or function types, we set the variables to the type
top. For the rest of variables, we create equivalence partitions of
these variables, where two variables V ,V ′ are in the same partition
iff V ≤ V ′ and V ′ ≤ V are in C. For each equivalence partition,
we create a unique type name t and assign it to each variable in
that partition. The type names are defined by equations to associate
them with function types or object types based on the type upper
bounds of the corresponding variables in the constraint set. If we
assign a function or object type to a type variable, we add an
equation to define such type.

4.6 Type inference as constraint closure consistency
In this section, we show that type inference is equivalent to check-
ing the consistency of constraint closure so that a program is ty-
pable if and only if the closure of the constraint set generated from
the program is consistent. For a consistent constraint set C, we can
find a satisfiable solution as in Section 4.5.

The proof for this section is omitted.

Lemma 4.1. If E `inf P : C′ and C = Closure(C′) is consistent,
then C is satisfiable

We can prove Lemma 4.1 by showing that if a constraint set C
is closed and consistent, then Solution(C) is a satisfiable solution
to each kind of constraints in C.

Lemma 4.2. If C is satisfiable, then Closure(C) is consistent.

To prove Lemma 4.2, we only need to show that if C is satisfi-
able, then its closure is also satisfiable. A satisfiable constraint set
is always consistent.

Theorem 4.3. Given a programP whereE `inf P | C,P is typable
iff Closure(C) is consistent.

From Theorem 4.3, we can conclude that our type inference
algorithm is sound and complete with respect to our type system.

5. Allow strong updates to new objects
Since we assume that constructor functions always return new ob-
jects, we can assign singleton types to the return values of construc-
tors. For simplicity, we do not assign singleton types to objects re-
turned from regular functions. The meta symbol ς ranges over the
singleton type names, which are distinct from the obj-type names.
Each singleton type ς is defined by an equation of the form

ς = @[mi : (τi, ψi)
i∈1..n],

where τi cannot be singleton types and ψi may be either ∗, •,
or ◦. As mentioned before, the label ∗ annotates members that
can have strong updates. An object of singleton type can have
unrestricted extensions as well. Also, given ς defined as above,
ς(mi) = (τi, ψi) for all i ∈ 1..n and ς(mi) = undef otherwise.

5.1 Type rules
Before introducing new type rules, we first define an operator ↓
to downgrade the singleton type ς to ς ′ so that some of the ∗
members in ς are definite in ς ′ and ς ′ may have some additional
potential members. A singleton type may become more restrictive
after downgrading since some of its members may not be changed
and it may be restricted in member extensions.

ς = @[mi : (τi, ψi)
i∈1..n]

ς ′ = @[mi : (τi, ψ
′
i)
i∈1..n

,mj : (τj , ◦)j∈n+1..m]

∀i ∈ 1..n ψi ≤ ψ′i ≤ • ∨ ψ′i = ψi = ◦
ς ↓ ς ′

where we define ∗ ≤ • and ∗ ≤ ∗.

A singleton type ς is a subtype of an obj-type t if some definite
members of ς appear as potential members in t while members
labeled with ∗ in ς do not appear in t.

t(m) = (τ, ψ′)⇒ (ς(m) = (τ, ψ) ∧ • ≤ ψ ≤ ψ′)
ς ≤ t

The above relations are used in a situation where an object
referenced by a variable of singleton type is also referenced by a
variable of obj-type. This can happen when a variable of singleton
type is passed to a parameter or assigned to a field.

This is illustrated in the following example where function f
updates or extends the members a and c of its parameter y.

1 function F(d) {
2 this.a = 1;
3 this.b = "one";
4 }
5 function f(y) {
6 y.a = 1;
7 y.c = 2;
8 return y;
9 }

10 x = new F(0);
11 x1 = x;
12 z = f(x);
13 w = z.a;

The type of x on line 10 is ςx and it becomes ς ′x on line 12.

ςx = @[a : (int, ∗), b : (string, ∗)]
ς ′x = @[a : (int, •), b : (string, ∗), c : (int, ◦)]
ty = [a : (int, ◦), c : (int, ◦)]

Before the variable x is passed to the parameter y of the function f,
we downgrade the type ςx to ς ′x so that ςx ≤ ty, where ty is the type
of y. The subtyping relation ς ′x ≤ ty guarantees that the ∗ members
of ς ′x do not appear in ty so that strong updates to these members
are not visible through ty. Because ςx ↓ ς ′x, we can safely change
the type of x to ς ′x since ς ′x has all the members of ςx with some of
its ∗ members labeled as definite. Specifically, the member a of ς ′x
is definite so that it cannot have strong updates. This is necessary
since the variable z is an alias of y while a is a definite member
in z’s type tz = [a : (int, •)]. Therefore, the variable x can have
strong updates even after it is assigned to variables of obj-types.

Since we need to downgrade singleton types in several places
including update statements, object allocations, and method calls,
we define a rule of the form Γ ` x : τ ‖ Γ′. In particular, if
the type of x is a subtype of τ , then the environment Γ remains
the same. Otherwise, we downgrade the type of x from ςx to ς ′x so
that ςx is a subtype of τ , and we replace all occurrences of ςx in
Γ with ς ′x, which is written as [ς ′x/ςx]Γ. To see why this last step is
necessary, consider the previous example where the variable x1 and
x are aliases of each other and they both have the type ςx. If the type
of x1 remains ςx after the call f(x), then the update x1.a = true
will change the member z.a to boolean, since x1 and z refer to the
same object. This would be inconsistent with the type of z.

Γ(z) = ς ς ↓ ς ′ ς ′ ≤ τ Γ′ = [ς ′/ς]Γ

Γ ` z : τ ‖ Γ′
Γ(z) ≤ τ

Γ ` z : τ ‖ Γ

The substitution of singleton types in Γ is defined as:

Γ = Γ′ ∪ {y 7→ ς} Γ′′ = [ς ′/ς]Γ′

[ς ′/ς]Γ = Γ′′ ∪ {y 7→ ς ′}
ς does not appear in Γ

[ς ′/ς]Γ = Γ

Γ = Γ′ ∪ {y 7→ τ} Γ′′ = [ς ′/ς]Γ′ τ 6= ς

[ς ′/ς]Γ = Γ′′ ∪ {y 7→ τ}

We also define a relation of the form ς ′ ≤(m,τ) ς such that if
an object of singleton type ς is assigned a value of type τ to its
member m, then the resulting type of the object is ς ′. If m is not
defined in ς or it is labeled with ∗ in ς , then the object can receive
strong update.

ς = @[mi : (τi, ψi)
i∈1..n] mi 6= m,∀i ∈ 1..n

ς ′ = @[mi : (τi, ψi)
i∈1..n,m : (τ, ∗)]

ς ′ ≤(m,τ) ς

ς = @[mi : (τ ′i , ψ
′
i)
i∈1..n

] ς ′ = @[mi : (τi, ψi)
i∈1..n]

τj = τ ∀i 6= j, τi = τ ′i , ψi = ψ′i

j ∈ 1..n (ψj = ψ′j = ∗) ∨ (τj = τ ′j ∧ ψ′j = • ∧ ψj 6= ∗)
ς ′ ≤(mj ,τ) ς

For example, the types of this at line 2 ςthis and at line 3 ς ′this
have the relation ς ′this ≤(b,string) ςthis.

ςthis = @[a : (int, ∗)]
ς ′this = @[a : (int, ∗), b : (string, ∗)]

Moreover, we define some relations for singleton types similar
to those for obj-types.

ς(m) = (τ, ψ) • ≤ ψ
ς ≤ [m : (τ, ◦)]

ς(m) = (τ, ψ) ψ ≤ • ψ′ ≤ •
ς ≤ [m : (τ, ψ′)]

∀m 6∈M. ς ′(m) = ς(m)

∀m ∈M. ς ′(m) = (τ, •), ς(m) = (τ, ψ), • ≤ ψ
ς ′ ≤M ς

Finally, we are ready to define the type rule for constructors.

Γ′ = Γ[this 7→ ς, x 7→ τarg] Γ′ ` s ‖ Γ′′

Γ(F) = τarg → ςres Γ′′(this) ↓ ςres def(ς) = ∅
Γ ` function F (x){s} T-Ctr

where def(ς) = {m | ς(m) = (τ,)}.
What is different is that the type of this pointer in the con-

structor function is initially assigned a singleton type that has no
members and the type of this may be replaced by other singleton
type after the function body is evaluated.

We also modify the type rules for updates, new statements, and
method calls as in Figure 9. For x = new F (z), we create a
singleton type that is downgraded from the return type of F for
x. For y.mj = z, if y has a singleton type ς , we extend that type
with the member mj to obtain ς ′ and let y map to ς ′ in the new
type environment. The update is a strong update or an extension if
either mj is labeled with ∗ or mj is not defined in ς .

5.2 Type inference
We need to modify the type inference rules for constructor function,
new statement, method call, and update in a way similar to the type
rules as in Figure 10. We use the variable V to represent singleton
types while V still represents obj-types.

The inference rules generates some new types of constraints:

V ↓ V ′ V ≤ V V ≤(m,V) V ′ V ≤M V ′ V ≤ [m : (V, ψ)].

For the definition of constraint satisfiability, we define a few
rules in addition to those in Section 4.2. If S is a satisfiable solution

Γ ` z : τ ‖ Γ′

Γ′(y) = ςy ⇒ Γ′′ = [ς ′y/ςy]Γ′ ς ′y ≤(m,τ) ςy

Γ′(y) = ty ⇒ ty ≤ [m : (τ, ◦)] t′y ≤{m} ty
y 6= this⇒ Γ′′ = Γ′[y 7→ t′y]

y = this⇒
Γ′′ = Γ′[y 7→ t′y, l 7→ Γ(l) ∪ {m}]

Γ ` y.m = z ‖ Γ′′
T-Upd

Γ(F) = τarg → ςres Γ ` z : τarg ‖ Γ′ ςres ↓ ς
Γ ` x = new F (z) ‖ Γ′[x 7→ ς]

T-New

Γ(y) ≤ [m : (ty.m, •)] Γ ` z : τarg ‖ Γ′

ty.m ≤ (tthis,M)× τarg → τres

Γ′(y) = ςy ⇒ Γ′ ` y : tthis ‖ Γ1 ς = Γ1(y)
ς ′y ≤M ς Γ′′ = [ς ′y/ς]Γ1

Γ′(y) = ty ⇒ t′y ≤M ty ty ≤ tthis
y 6= this⇒ Γ′′ = Γ′[y 7→ t′y]

y = this⇒
Γ′′ = Γ′[y 7→ t′y, l 7→ Γ(l) ∪M]

Γ ` x = y.m(z) ‖ Γ′′[x 7→ τres]
T-Invk

Figure 9. New type rules for statements

to the constraint set C, then

V ≤(m,V) V ∈ C ⇒ S(V) ≤(m,S(V)) S(V ′)
V ≤ V ∈ C ⇒ S(V) ≤ S(V)

V ≤M V ′ ∈ C ⇒ S(V) ≤S(M) S(V ′)
V ↓ V ′ ∈ C ⇒ S(V) ↓ S(V ′)

V ≤ [m : (V, ψ)] ∈ C ⇒ S(V) ≤ [m : (S(V), ψ)]

VF appears in C ⇒ def(S(VF)) = ∅.
We add some closure rules for the new forms of constraints in

Figure 11. The closure rules 17, 18, and 19 are for the constraints
of the form V ≤M V ′, which are similar to those for V ≤M V ′.
Rule 13, 14, and 20 propagates constraints related to extensions
or updates to objects of singleton types. Rule 15, 16, and 21 are
for the interfacing between singleton types and obj-types. Rule 19,
20, and 21 are applied to AClosed constraint set and the resulting
constraint set is still AClosed.

The definition of consistency is similar to what we had before.
In additional to the existing rules in Section 4.4, a constraint set C
is inconsistent if

1. V ≤ int ∈ C
2. V ≤ (V0,M)× V1 → V2 ∈ C
3. V ≤ [m : (, ∗)] ∈ C
4. VF ≤ [m : (V,)] ∈ C.

where the last rule replaces VF ≤ [m : (V, •)] ∈ C in the previous
consistency rules. A singleton type cannot be an integer or function
type and an obj-type cannot have a member labeled with ∗ either.
The initial type of the self pointer of a constructor function may not
have any members.

We define the solution S for a constraint set C for its V variables
so that S(V) = [mi : (τi, ψi)

i∈1..n] where ∀i ∈ 1..n, τi = S(V)
for some V such that [mi : (V,)] ∈ UpperC(V) and

1. ψi = ∗ if X = {∗} or {∗, •},
2. ψi = ◦ if X = {◦}, and

E′ = E[x 7→ Varg , this 7→ VF]

E′ `inf s ‖ E′′ | C E(F) = Varg → Vres
E `inf function F (x){s} | C ∪ {E′′(this) ↓ Vres}

V fresh E `inf z : V ‖ E′ | C
E′(y) = Vy ⇒ V ′y fresh E′′ = [V ′y/Vy]E′

C′ = {V ′y ≤(m,V) Vy}
E′(y) = Vy ⇒ V ′y ,M fresh

C′ = {Vy ≤ [m : (V, ◦)], V ′y ≤M Vy,m ∈M}
y 6= this⇒ E′′ = E′[y 7→ V ′y]

y = this⇒
E′′ = E′[y 7→ V ′y , l 7→ E′(l) ∪M]

E `inf y.m = z ‖ E′′ | C ∪ C′

Vy.m, Vthis, Varg , Vres ,M fresh E `inf z : Varg ‖ E′ | C′

C = {E(y) ≤ [m : (Vy.m, •)], Vy.m ≤ (Vthis,M)× Varg → Vres}
E′(y) = Vy ⇒ V ′y fresh E′ ` y : Vthis ‖ E1 | C2

V = E1(y) E′′ = [V ′y/V]E1

C′′ = C2 ∪ {V ′y ≤M V}
E′(y) = Vy ⇒ V ′y fresh C′′ = {V ′y ≤M Vy, Vy ≤ Vthis}

y 6= this⇒ E′′ = E′[y 7→ V ′y]

y = this⇒
E′′ = E′[y 7→ V ′y , l 7→ E(l) ∪M]

E `inf x = y.m(z) ‖ E′′[x 7→ Vres] | C ∪ C′ ∪ C′′

V fresh E(F) = Varg → Vres E `inf z : Varg ‖ E′ | C
E `inf x = new F (z) ‖ E′[x 7→ V] | C ∪ {Vres ↓ V}

E(z) = V ⇒ C = {E(z) ≤ V } E′ = E

E(z) = V ⇒ V ′ fresh E′ = [V ′/V]E
C = {V ↓ V ′,V ′ ≤ V }

E `inf z : V ‖ E′ | C

Figure 10. New type inference rules

3. ψi = • otherwise,

where X = {ψ | [mi : (, ψ)] ∈ UpperC(V)}.
The label ψi of S(V) is ∗ when ∗ ∈ X . We also let ψi be ∗

if X = {∗, •} since a member select statement adds a constraint
of the form V ≤ [mi : (V, •)]. Reading a member of a singleton
type does not make the member definite. Finally, we let ψi be • if
{∗, ◦} ⊆ X , or {•, ◦} ⊆ X , or X = {•}. The reason for this is
that we keep track of whether a member of a singleton type V also
exists in the type V where V ≤ V by propagating constraints of the
form V ≤ [mi : (V ′, ◦)] through Rule 15. When both constraints
of the form V ≤ [mi : (V ′, ∗)] and V ≤ [mi : (V ′, ◦)] are present,
it indicates that mi has to be a definite member in S(V).

6. Related work
Our work is similar to the type inference system of Anderson
et al. [4] on a small subset of JavaScript that supports explicit
member extensions on objects and their type system ensures that
the new members may only be accessed after the extensions. We
follow their lead in using method labels to denote members of
an object as being definite or potential. In addition to explicit
member extension, we also allow explicit extension where an object
may extend itself through method calls on the object. We also

V ≤ [m : (V, ψ)],V ′ ≤ [m : (V ′, ψ′)] −→ V ≤ V ′, V ′ ≤ V (12)

V ≤(m,V) V ′ −→ V ≤ [m : (V, ∗)] (13)

V ≤(m,V) V ′, V ′ ≤ [m′ : (V ′, ψ)] −→ V ≤ [m′ : (V ′, ψ)] where m′ 6= m or ψ = ◦ (14)

V ≤ V, V ≤ [m : (V ′, ψ)] −→ V ≤ [m : (V ′, ψ)], V ≤ [m : (V ′, ◦)] (15)

V ↓ V ′, V ≤ [m : (V, ψ)] −→ V ′ ≤ [m : (V, ψ)] (16)

V ≤M V ′,V ′ ≤ [m : (V, ψ)] −→ V ≤ [m : (V, ψ)] (17)

V ≤M V ′,m ∈M,V ′ ≤ [m : (V, ◦)] −→ V ≤ [m : (V, •)] (18)

C −→A C {V ≤M V ′, V ≤ [m : (V, •)]} ⊆ C {m ∈M} 6⊆ C
C −→B C ∪ {V ′ ≤ [m : (V, •)]}

(19)

C −→A C {V ≤(m,V) V ′, V ≤ [m′ : (V ′, •)]} ⊆ C m′ 6= m

C −→B C ∪ {V ′ ≤ [m′ : (V ′, •)]}
(20)

C −→A C {V ↓ V ′, V ′ ≤ [m : (V, •)]} ⊆ C
C −→B C ∪ {V ≤ [m : (V, •)]} (21)

Figure 11. Additional closure rules

distinguish constructor functions from regular functions in that
constructors are used in new expressions that always return new
objects. This distinction allows new objects to have strong updates
and unrestricted extensions.

Also related is the work of Gianantonio et al. [7] on lambda
calculus of objects with self-inflicted extension. Instead of using
labels, they separate potential and definite members of an object
type into two parts: interface part and reservation part. After an
extension, the extended member moves from reservation part to the
interface part. They define a type construct to recursively encode
member extension information for methods. In comparison, we
extend each function type with a set of members that are added
to this in the function body. They distinguish two kinds of object
types: pro-type and obj-type. A pro-type’s reservation part may be
extended but no subtyping is allowed on pro-types. A pro-type
may be promoted to obj-type which allows covariant subtyping
but obj-types’ reservation parts may not be extended. We allow
newly created objects to have singleton types similar to their pro-
types. The difference is that an object of singleton type do not
lose the ability of having strong updates even after it is assigned
to parameters or fields of obj-type.

Bono and Fisher [5] proposed an imperative, first-order calculus
with object extensions, which also distinguishes extensible pro-
types without subtyping from sealed obj-types that allow width
and depth subtyping. Their objective is to show that Java-style
classes and mixins can be encoded in their calculus through object
extensions and encapsulation.

Recency types of Heidegger and Thiemann [10, 11] have the
similar goal of preventing the access of undefined members through
type-based analysis. Their approach uses two kinds of object types:
singleton type and summary type, where each singleton type is
associated with an abstract location and the singleton type has to be
promoted to the corresponding summary type when the next object
is allocated at the same location. Objects of singleton types can
receive strong updates for adding new members or even changing
the types of existing members. Objects of summary types can no
longer be extended. Moreover, they support prototypes and have
implemented a constraint-based type inference algorithm. In their
formalism, abstract locations are assigned to new expressions that
return empty objects and if a function will extend its parameter,
the parameter type needs to be singleton type. This may present
some challenges for supporting explicit extension. For example,

the setter function discussed earlier may be a member of two
different constructors. In order to extend this pointer, setter’s
receiver type needs to be a singleton type, which forces the two
constructors to return objects of the same singleton type. This can
be limiting as the two constructors are forced to have the set of
members of the same types. In comparison to our work, recency
type allows singleton types to be in the object fields and function
parameters, though it is more complex and does not allow extension
after an object loses its recency.

Jensen et al. [12] have implemented a practical analyzer to de-
tect possible runtime errors of JavaScript program. Their approach
is based on abstract interpretation and uses recency information.
The analyzer can report the absence of errors based on some inputs
but it does not infer types.

Earlier work of Thiemann [22] proposed a type system for
a subset of JavaScript language to detect conversion errors of
JavaScript values. The type system models automatic conversions
in JavaScript but it does not model recursive or flow sensitive types.

There are a number of studies on type inference for class-based
languages. Palsberg et al. [13, 15] have developed a type inference
algorithm based on ideas of flow analysis for object-oriented pro-
grams with inheritance, assignments, and late binding. The purpose
is to guarantee all messages are understood while allowing poly-
morphic methods. The algorithm handles late binding with con-
ditional constraints and solves the constraints by least fixed-point
derivation. Similar algorithm was applied to object-based language
SELF [3] that features objects with dynamic inheritance. Plevyak
and Chien [18] extended this flow-based approach for better pre-
cision via an incremental algorithm. Further enhancement on pre-
cision and efficiency were made by Agesen in his Cartesian Prod-
uct Algorithm [2], which was applied to type inference for Python
programs to improve compiled code [20]. Eifrig et al. [8] devel-
oped a polymorphic, constraint-based type inference algorithm for
a class-based language with polymorphic recursively constrained
types. The goal was to mitigate the tradeoff between inheritance
and subtyping. The recursively constrained types are also used in
a type inference algorithm for Java [23] to verify the correctness
of downcasts. Their inference algorithm extends Agesen’s Carte-
sian Product Algorithm with the ability to analyze data polymor-
phic programs.

DRuby [9] is a tool to infer types for Ruby, which is a class-
based scripting language. DRuby includes a type system with fea-

tures such as union, intersection types, object types, self-type, para-
metric polymorphism, and tuple types. Their type inference is also
a constraint-based analysis.

As for type inference for object-based languages, Palsberg de-
veloped efficient type inference algorithms [14] with recursive
types and subtyping for Abadi Cardelli object calculus [1], which
has method override and subsumption but not object extension.
similar algorithms were developed for inferring object types for an
object calculus with covariant read-only fields [17] and supporting
record concatenation [16].

Type inference for dynamically typed languages is not scalable
to very large programs. Spoon and Shivers [21] have developed
a type inference algorithm that trades precision for speed using
a demand-driven approach, which solves user provided goals by
possibly generating more subgoals. They manage the number of
active goals with a subgoal pruning technique, which is to provide
a trivially correct answer to a goal to avoid having further subgoals.
The balance between precision and scalability may be achieved by
choosing pruning thresholds.

7. Conclusion and discussion
We have presented a constraint-based type inference algorithm for
a small subset of JavaScript. The goal is to prevent accessing an
object’s member before it is defined. The type system supports ex-
plicit extension as well as implicit extension of objects by invoking
their methods. We have proved that the type inference algorithm is
sound and complete so that a program is typable if and only if we
can infer its types. We also included an extension to allow strong
updates to new objects.

Our primary focus is to keep track of member addition/update
to objects during and after object initialization, which can be useful
for some programs that exhibit this behavior [19]. However, our
system is lack of many important features found in real world
JavaScript programs such as prototypes, variadic functions, eval
function, member deletion, and objects as associative arrays. Also,
our type system does not allow depth subtyping on object types or
support parametric polymorphism.

Some improvement seems possible with the current design.
Currently, the type of a function argument is not extended after
the call returns. For example, if we pass a variable x to a function
addSize, which extends the parameter with an additional member
size, the variable x has the same type before and after the call:
[size : (int, ◦), . . .], with the potential size member.

x = new Form();
addSize(x);

It seems straightforward to have this type of extension so that after
the call returns, the type of x becomes [size : (int, •), . . .]. The
problem is to only identify members added to the function param-
eter before it is overwritten by other value. Also, we would like to
include branch statements and prototypes in the formalization. A
new object of singleton type can have strong updates until it be-
comes a function’s prototype.

References
[1] M. Abadi and L. Cardelli. A Theory of Objects. Springer-Verlag New

York, Inc., Secaucus, NJ, USA, 1996.

[2] O. Agesen. The Cartesian Product Algorithm: Simple and Pre-
cise Type Inference Of Parametric Polymorphism. In Proceedings
of the 9th European Conference on Object-Oriented Programming
(ECOOP’95), pages 2–26, 1995.

[3] O. Agesen, J. Palsberg, and M. I. Schwartzbach. Type Inference of
SELF. In Proceedings of the 7th European Conference on Object-
Oriented Programming (ECOOP’93), pages 247–267, 1993.

[4] C. Anderson, S. Drossopoulou, and P. Giannini. Towards Type Infer-
ence for JavaScript. In 19th European Conference on Object-Oriented
Programming (ECOOP’05), Glasgow, Scotland, pages 428–452, July
2005.

[5] V. Bono and K. Fisher. An Imperative, First-Order Calculus with Ob-
ject Extension. In the 12th European Conference on Object-Oriented
Programming (ECOOP’98), pages 462–497, 1998.

[6] D. Crockford. JavaScript: The Good Parts. O’Reilly Media, 2008.
[7] P. Di Gianantonio, F. Honsell, and L. Liquori. A Lambda Calcu-

lus of Objects With Self-Inflicted Extension. In Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA’98),
pages 166–178, 1998.

[8] J. Eifrig, S. Smith, and V. Trifonov. Sound Polymorphic Type Infer-
ence for Objects. SIGPLAN Not., 30(10):169–184, 1995.

[9] M. Furr, J.-h. D. An, J. S. Foster, and M. Hicks. Static type inference
for Ruby. In Proceedings of the 2009 ACM symposium on Applied
Computing (SAC’09, pages 1859–1866, 2009.

[10] P. Heidegger and P. Thiemann. Recency Types for Dynamically-
Typed, Object-Based Languages. In International Workshop on Foun-
dations of Object-Oriented Languages (FOOL’09), 2009.

[11] P. Heidegger and P. Thiemann. Recency Types for Analyzing Scripting
Languages. In Proceedings of the 24th European Conference on
Object-Oriented Programming (ECOOP’10),, pages 200–224, 2010.

[12] S. H. Jensen, A. Møller, and P. Thiemann. Type Analysis for
JavaScript. In 16th International Static Analysis Symposium (SAS’09),
August 2009.

[13] N. Oxhøj, J. Palsberg, and M. I. Schwartzbach. Making Type Inference
Practical. In Proceedings of the European Conference on Object-
Oriented Programming (ECOOP’92), pages 329–349, 1992.

[14] J. Palsberg. Efficient Inference of Object Types. Inf. Comput., 123(2):
198–209, 1995.

[15] J. Palsberg and M. I. Schwartzbach. Object-Oriented Type Inference.
SIGPLAN Not., 26(11):146–161, 1991.

[16] J. Palsberg and T. Zhao. Type Inference for Record Concatenation and
Subtyping. Inf. Comput., 189(1):54–86, 2004.

[17] J. Palsberg, T. Zhao, and T. Jim. Automatic discovery of covariant
read-only fields. ACM Trans. Program. Lang. Syst., 27(1):126–162,
2005.

[18] J. Plevyak and A. A. Chien. Precise Concrete Type Inference for
Object-Oriented Languages. In Proceedings of the 9th annual con-
ference on Object-oriented programming systems, language, and ap-
plications (OOPSLA’94), pages 324–340, 1994.

[19] G. Richards, S. Lesbrene, B. Burg, and J. Vitek. An Analysis of
the Dynamic Behavior of JavaScript Programs. In Proceedings of
the ACM Programming Language Design and Implementation Con-
ference (PLDI), June 2010.

[20] M. Salib. Faster than C: Static Type Inference with Starkiller. In in
PyCon Proceedings, Washington DC, pages 2–26, 2004.

[21] S. A. Spoon and O. Shivers. Demand-Driven Type Inference with
Subgoal Pruning: Trading Precision for Scalability. In Proceedings
of the 18th European Conference on Object-Oriented Programming,
(ECOOP’04), pages 51–74, 2004.

[22] P. Thiemann. Towards a Type System for Analyzing JavaScript Pro-
grams. In 14th European Symposium on Programming (ESOP’05),
pages 408–422, 2005.

[23] T. Wang and S. F. Smith. Precise Constraint-Based Type Inference
for Java. In Proceedings of the 15th European Conference on Object-
Oriented Programming (ECOOP’01), pages 99–117, 2001.

A. Error propagation
Figure 12 contains the rules for propagating runtime errors caused
by accessing an undefined object member or calling an undefined
function or constructor. Figure 13 describes the conditions that lead
to null pointer exceptions.

H(χ(y))(mj) = undef

H,χ, x = y.mj ; error

H,χ, s; error or (H,χ, s; H ′, χ′ ∧ H ′, χ′, s′ ; error)

H,χ, s; s′ ; error

H(χ(y))(mj) = undef or
H(χ(y))(mj) = f ∧ f 6∈ dom(χ) or
χ(f) = function f(x′){s; return z′; }

χ′ = {this 7→ χ(y), x′ 7→ χ(z)} H,χ′, s; error

H,χ, x = y.mj(z) ; error

F 6∈ dom(χ) or
χ(F) = function F (x′){s} ι 6∈ dom(H) H ′ = H[ι 7→ []]

χ′ = {this 7→ ι, x′ 7→ χ(y)} H ′, χ′, s; error

H,χ, x = new F (y) ; error

Figure 12. Error of accessing undefined members or functions

χ(y) = null

H,χ, x = y.mj ; nullPtrEx

χ(y) = null

H,χ, y.mj = z ; nullPtrEx

H,χ, s; nullPtrEx or
H,χ, s; H ′, χ′ H ′, χ′, s′ ; nullPtrEx

H,χ, s; s′ ; nullPtrEx

χ(y) = null or
H(χ(y))(mj) = f χ(f) = function f(x′){s; return z′; }
χ′ = {this 7→ χ(y), x′ 7→ χ(z)} H,χ′, s; nullPtrEx

H,χ, x = y.mj(z) ; nullPtrEx

ι 6∈ dom(H) H ′ = H[ι 7→ []] χ(F) = function F (x′){s}
χ′ = {this 7→ ι, x′ 7→ χ(y)} H ′, χ′, s; nullPtrEx

H,χ, x = new F (y) ; nullPtrEx

Figure 13. Null pointer exception

B. Type inference example
In this section, we show some of the type inference steps for
the example in Figure 1. We simplify the example slightly and
reproduce it below.

function Form(a) {
this.set = setter;

}
function setter(b) {

this.handle = b;
return 0;

}

function handler(c) {
return 0;

}
// main
x = new Form(1);
y = x.set(handler);
z = x.handle(1);

We first show the constraints generated from each function in
Figure 14, where we choose type variable names based on the
names of the corresponding variable. For example, the type variable
for function setter is VSetter . The exception is VForm, which is
the type variable corresponding to the initial type of this pointer
in the constructor function Form. Type variables for other types are
sequential numbered to avoid collision. Also, we have three related
type variables: Vx and Vx1 are for the types of x before and after
the call x.set(handler) while Vx2 is for the type of x after the
call x.handle(1).

Functions Generated constraints

Form VForm ≤ [set : (V1, ◦)] VForm ≤ []
V2 ≤M1 VForm set ∈M1 Vsetter ≤ V1

setter
Vsetter ≤ (V3,M2)× Vb → V4 int ≤ V4

V3 ≤ [handle : (V5, ◦)] Vb ≤ V5 V3 ≤ []
V6 ≤M3 V3 handle ∈M3 M2 =M3

handler Vhandler ≤ (V7,M4)× Vc → V8

int ≤ V8 V7 ≤ []

main

V2 ≤ Vx int ≤ Va

Vx ≤ [set : (V9, •)] V12 ≤ Vy
V9 ≤ (V10,M5)× V11 → V12 Vx ≤ V10

Vhandler ≤ V11 Vx1 ≤M5 Vx

Vx1 ≤ [handle : (V13, •)] V16 ≤ Vz
V13 ≤ (V14,M6)× V15 → V16 Vx1 ≤ V14

int ≤ V15 Vx2 ≤M6 Vx1

Figure 14. Generated constraints

After applying the closure rules, we collect the types in the
upper bound of each variable, most of which are shown in Fig-
ure 15. We can verify that the closure of the original constraints set
is consistent. In particular, the upper bound of VForm is {[], [set :
(V1, ◦)]} and satisfies the consistency rule that it may not contain
object types with definite members.

Closure also generates some constraints for M variables with
clear solutions.
M2 =M3 M2 =M5 M5 =M2 M4 =M6 M6 =M4

set ∈M1 handle ∈M3 handle ∈M2 handle ∈M5

From the type upper bounds, we can obtain solutions to each
type. The solutions to most of the variables and functions are shown
in Figure 16.

C. Proof of type soundness
Some of the proof omitted from the paper is included here.

Lemma C.1. If Γ ` s ‖ Γ′, ∀m ∈ Γ(l), Γ(this) ≤ [m : (, •)],
then Γ′(this) ≤Γ′(l) Γ(this).

Proof. If Γ′ = Γ, then by definition of ≤M , Γ(this) ≤Γ(l)

Γ(this) since every m in Γ(l) is a definite member in Γ(this).

Type variables Type upper bound

Va int

V1 V9, (V10,M5)× V11 → V12

V2 [set : (V1, •)], Vx, [set : (V9, •)], V10

V3, [handle : (V5, ◦)], [], [handle : (V13, ◦)]
VForm [], [set : (V1, ◦)]
Vsetter (V3,M2)× Vb → V4, V1, V9

(V10,M5)× V11 → V12

V3 [handle : (V5, ◦)], [], V10

V4 int, V12, Vy
Vb V5, V11, V13, (V14,M6)× V15 → V16

V5 V13, (V14,M6)× V15 → V16

Vhandler (V7,M4)× Vc → V8, V11, Vb, V5

(V14,M6)× V15 → V16, V13

Vc V15, int
V7 [], V14

V8 int, V16

Vx [set : (V9, •)], V10, V3, [handle : (V5, ◦)], []

[handle : (V13, ◦)]
V9 (V10,M5)× V11 → V12, V1

V10 V3, [handle : (V5, ◦)], []

V11 Vb, V5, V13, (V14,M6)× V15 → V16

V12 Vy , V4, int
Vx1 [set : (V9, •)], [handle : (V13, •)], V14

[handle : (V5, ◦)]
V13 (V14,M6)× V15 → V16, V5

V14 V7, []

V15 int, Vc
V16 Vz , int, V8

Vy int

Vz int

Figure 15. Type upper bounds of each type variable

Γ′ may be different from Γ only if s is a member update/add or
a method call on this variable, or s is a sequence statements.

If s is this.mj = z, then Γ′(l) = Γ(l) ∪ {mj}, Γ(this) ≤
[mj : (, ◦)], and Γ′(this) ≤{mj} Γ(this). Thus, Γ′(this) ≤
[mj : (, •)] and Γ′(this) ≤Γ′(l) Γ(this).

If s is x = this.m(z), Γ(this) ≤ [m : (t, •)], and t ≤
(t0,M) × τ1 → τ2, then Γ′(l) = Γ(l) ∪ M , Γ′(this) ≤M
Γ(this). By the definition of ≤M , ∀m ∈ M , Γ(this) ≤ [m :
(, ◦)] and Γ′(this) ≤ [m : (, •)]. Therefore, Γ′(this) ≤Γ′(l)

Γ(this).
If s = S1;S2 and Γ ` s1 ‖ Γ′, Γ′ ` s2; Γ′′, by induction,

Γ′(this) ≤Γ′(l) Γ(this), which means ∀m ∈ Γ′(l), Γ′(this) ≤
[m : (, •)]. By the induction again, we have Γ′′(this) ≤Γ′′(l)

Γ′(this). Since Γ′(l) ⊆ Γ′′(l), by definition of ≤M , we have
Γ′′(this) ≤Γ′′(l) Γ(this).

Lemma C.2. If Γ ` function f(x){s; return z}, Γ(f) = (t,M)×
τ1 → τ2, Γ′ = Γ[this 7→ t, x 7→ τ1, l 7→ ∅], Γ′ ` s ‖ Γ′′, and
M = Γ′′(l), then Γ′′(this) ≤M t.

Names Corresponding types

a int

t1 = (t3, {handle})× tb → int

t2 = [set : (t1, •), handle : (t5, ◦)]
Form int→ tx

t5 = (t7, ∅)× int→ int

t3 = [handle : (t5, ◦)]
b tb = (t7, ∅)× int→ int

setter tsetter = (t3, {handle})× tb → int

t7 = []

c int

handler thandler = (t7, ∅)× int→ int

x tx = [set : (t1, •), handle : (t5, ◦)]
x1 tx1 = [set : (t1, •), handle : (t5, •)]
y int

z int

Figure 16. Constraint solution

Proof. Since Γ′(l) = ∅ and Γ′ ` s ‖ Γ′′, from Lemma C.1,
Γ′′(this) ≤Γ′′(l) Γ′(this), which is Γ′′(this) ≤M t.

Lemma C.3. If Σ,Γ ` H,χ, χ(y) = ι, and Γ(y)(m) = (τ, •),
then H(ι)(m) = v where Σ,Γ ` v : τ .

Lemma 3.1 If Σ,Γ ` H,χ and Γ ` s ‖ Γ′, thenH,χ, s 6; error,
and if H,χ, s; H ′, χ′, then ∃ Σ′ such that Σ′,Γ′ ` H ′, χ′.

Proof. We prove by induction analysis on reduction rules applied.
For the proof, we need an additional invariant – Σ′(ι) ≤ Σ(ι) for
any ι ∈ dom(Σ).

R-Dec Let s be var x. Then H,χ, s ; H,χ[x 7→ null]. Since
null can have any type and if Γ ` s ‖ Γ[x 7→ τ], then
Γ[x 7→ τ] ` H,χ[x 7→ null].

R-Asn Let s be x = z. By Rule (T-Asn), Γ′ = Γ[x 7→ Γ(z)]. By
the induction hypothesis, we have Σ,Γ ` χ(z) : Γ(z). Hence,
Σ,Γ′ ` H,χ[x 7→ χ(z)] holds.

R-Sel Let s be y.mj . By Rule (T-Sel), Γ(y) ≤ [mj : (τj , •)]
and Γ′ = Γ[x 7→ τj]. Then ∃ι such that χ(y) = ι. From
Γ ` H,χ and Lemma C.3, ∃vj such that H(ι)(mj) = vj and
Σ,Γ ` vj : τj . Thus, H,χ, x = y.mj ; H,χ[x 7→ vj]. From
Σ,Γ ` vj : τj , we have Σ,Γ′ ` H,χ[x 7→ vj].

R-Upd Let s be y.mj = z. Let χ(y) = ι. Then H,χ, y.mj =
z ; H ′, χ, where H ′ = H[ι 7→ H(ι)[mj 7→ χ(z)]]. By
Rule (T-Upd), Γ(z) ≤ τj where Γ(y) ≤ [mj : (τj , ◦)]. From
Σ,Γ ` H,χ, we have Σ,Γ ` χ(z) : Γ(z). Also by Rule (T-
Upd), Γ′ = Γ[y 7→ t], and t ≤{mj} Γ(y). Let Σ′ = Σ[ι 7→ t′]

and t′ ≤{mj} Σ(ι). From Σ(ι) ≤ Γ(y), we have t′ ≤ t. Then
Σ′,Γ′ ` H ′, χ. The only difference between Σ′ and Σ is the
type of ι and Σ′(ι) ≤ Σ(ι).

R-Invk Let s be x = y.mj(z). By Rule (T-Invk), Γ(y) ≤ [mj :
(tj , •)] and tj ≤ (t0,M) × τ1 → τ2. From Γ ` H,χ and
Lemma C.3, ∃f such that H(χ(y))(mj) = f and Γ(f) ≤ tj .
Let lookup(f, χ(ft)) = function f(x′){s′; return z′}. Let
Γ0 = Γinit[x

′ 7→ τ1, this 7→ t0]. Then by Rule (T-Fn),
Γ0 ` s′ ‖ Γ′0 and Γ′0(this) ≤M t0.
By Rule (T-Invk), Γ(y) ≤ t0 and Γ(z) ≤ τ1. Thus, Σ,Γ0 `
H,χ′ where χ′ = {x′ 7→ Γ(z), this 7→ Γ(y), ft 7→ χ(ft)}.
Thus, by induction hypothesis, ∃Σ′ such that if H,χ′, s′ ;

H ′, χ′′, then Σ′,Γ′0 ` H ′, χ′′ and Γ′0(z′) ≤ τ2. Let χ(y) = ι,
and Γ′ = Γ[y 7→ t, x 7→ τ2], where t ≤M Γ(y). By
Lemma C.2, Γ′0(this) ≤M t0. Since Σ′(ι) ≤ Γ′0(this), each
m ∈ M is definite member of Σ′(ι). From Γ′(y) ≤M Γ(y),
the only differences between Γ(y) and Γ′(y) are the labels on
members in M . Also since Σ′(ι) ≤ Σ(ι) ≤ Γ(y) it follows
that Σ′(ι) ≤ Γ′(y).
By the induction hypothesis, ∀ι ∈ dom(Σ), Σ′(ι) ≤ Σ(ι).
Thus, Σ′,Γ′ ` χ(y) : Γ′(y), ∀y ∈ dom(χ).
From Rule (T-Invk), we have Γ′(x) = τ2. From Σ′,Γ′0 `
H ′, χ′′, we have Σ′,Γ′0 ` χ′′(z′) : Γ′0(z′). From Γ′0(z′) ≤ τ2,
it follows that Σ′,Γ′ ` H ′, χ[x 7→ χ′′(z′)].

R-New Let s be x = new F (z) and function F (x′){s′} be the
definition of F . From Rule (T-Ctr), ∃ t0 and τ such that Γ1 =
Γinit[this 7→ t0, x

′ 7→ τ], Γ1 ` s ‖ Γ2, Γ2(this) ≤ t′0,
and Γ(F) = τ → t′0. By Rule (T-New), Γ′ = Γ[x 7→ t′0]
and Γ(z) ≤ τ . Let ι be a new object label, χ1 = {this 7→
ι, x′ 7→ χ(z)}, and H1 = H[ι 7→ []]. Since def(t0) = ∅,
it is clear that Σ[ι 7→ t0],Γ1 ` H1, χ1. By the induction
hypothesis, there exists Σ′,Γ2 such that ifH1, χ1, s; H2, χ2,
then Σ′,Γ2 ` H2, χ2.
By the induction hypothesis, ∀ι ∈ dom(Σ), Σ′(ι) ≤ Σ(ι).
Thus, ∀y ∈ dom(χ), Σ′,Γ′ ` χ(y) : Γ′(y).
Since Σ′(ι) ≤ Γ2(this) ≤ t′0 = Γ′(x), we have Σ′,Γ′ `
H2, χ[x 7→ ι].

R-Seq The proof is by induction.

D. Proof of type inference as constraint closure
consistency

Lemma D.1. If E `inf P | C′ and C = Closure(C′) is consistent,
then {V ≤M V ′,m ∈M} ⊆ C implies V ′ ≤ [m :] is in C.

Proof. We prove by induction that if {V ≤M V ′,m ∈ M} ⊆ C
or V ≤ (V ′,M)× Varg → Vres is in C, then V ′ ≤ [m :] is in C.

Let’s first consider how constraints withM variables are added
to C′ by the inference rules. For each member update, we generate
constraints of the form V ≤M V ′, m ∈ M, and V ≤ [m :].
For each method call, we generate constraints of the form Vy.m ≤
(Vthis,M)× Varg → Vres , Vy ≤ Vthis, and V ′y ≤M Vy . For each
function, we generate constraints of the form Vf ≤ (Vthis,M) ×
Varg → Vres , M =

⋃
i∈1..nMi, and for the function body, we

generate constraints of the form Vn ≤Mn . . . V1 ≤M1 Vthis.
For the constraints generated from a method call, if m ∈ M

is in C, then it has to be the result of applying closure rule 5,
where {Vy.m ≤ (V ′this,M′) × V ′arg → V ′res ,M′ = M,m ∈
M′, Vthis ≤ V ′this} ⊆ C. By the induction hypothesis, V ′this ≤
[m :] is in C. Thus, Vthis ≤ [m :] is in C as well. Also, since
Vy ≤ Vthis is in C, Vy ≤ [m :] is in C.

For the constraints generated from a function, if m ∈ M is in
C, then by consistency rule 6, there existsMi so that m ∈ Mi is
in C. By the induction hypothesis, Vi ≤ [m :] is in C. By closure
rule 7 and 8, we have Vthis ≤ [m :] in C.

Lemma 4.1 If E `inf P : C′ and C = Closure(C′) is consistent,
then C is satisfiable.

Proof. Since C is Closed, it is AClosed as well.
We show that S = Solution(C) satisfies each constraint in C.
First, S(M) = {m | m ∈ M}. S apparently satisfies con-

straint of the form m ∈ M. For constraint of the form M =⋃
i∈1..nMi, since C is AClosed, by Rule 6, if (m ∈ Mi) ∈ C

and i ∈ 1..n, then m ∈ M as well. Thus, S(Mi) ⊆ S(M).
Since C is consistent, for each (m ∈ M) ∈ C, ∃Mi such that

(m ∈ Mi) ∈ C. Therefore, S(M) =
⋃
i∈1..n S(Mi). For con-

straint of the formM = M′ andM′ = M, (m ∈ M) ∈ C iff
(m ∈M′) ∈ C. Thus, S(M) = S(M′).

Also, for each VF appearing in C, from the definition of consis-
tency, UpperC(VF) does not contain type of the form [m : (V, •)].
Thus, by the definition of Solution, no member of S(VF) is defi-
nite, which means def(S(VF)) = ∅.

Next we consider constraints on types.

1. If int ≤ V or V ≤ int ∈ C, then S(V) = int.
2. If V ≤ [m : (V ′, ψ)] ∈ C, then by the definition of con-

sistency, UpperC(V) does not contain int or function types,
Thus, ∃t such that S(V) = t and t(m) = (S(V1), ψ′), where
[m : (V1, ψ1)] ∈ UpperC(V), ψ′ = • if [m : (V2, •)] ∈
UpperC(V) for some V2 and ψ′ = ◦ otherwise. By Rule 4,
V ′ ≤ V1 and V1 ≤ V ′ ∈ C, which implies S(V ′) = S(V1).
Thus, S(V) ≤ S([m : (V ′, ψ)]).

3. If V ≤ (V0,M) × V1 → V2 ∈ C, then by the definition of
consistency, UpperC does not contain int or object types. Thus,
∃t, such that S(V) = t and t = (S(V ′0), S(M′))× S(V ′1)→
S(V ′2), where (V ′0 ,M′) × V ′1 → V ′2 ∈ UpperC(V). By
Rule 5, V0 ≤ V ′0 , V

′
0 ≤ V0,M = M′,M′ = M, V1 ≤

V ′1 , V
′
1 ≤ V1, V2 ≤ V ′2 , V

′
2 ≤ V2 ∈ C. Thus, S(V0) = S(V ′0),

S(M) = S(M′), S(V1) = S(V ′1), S(V2) = S(V ′2), which
means that S(V) ≤ S((V0,M)× V1 → V2).

4. If V ≤ V ′ ∈ C, we consider the following subcases:
(a) S(V ′) = int iff S(V) = int.
(b) If S(V ′) = top, then S(V) is equal to some t. Thus,

S(V) ≤ S(V ′).
(c) If V ′ ≤ (V0,M) × V1 → V2 ∈ C, then V ≤ (V0,M) ×

V1 → V2 ∈ C by Rule 1. Since C is consistent, UpperC(V) ⊇
UpperC(V

′) and they do not contain int or object types. By
the reasoning similar to case 3, S(V) = t and S(V ′) = t′

for some t and t′, where ∃t0,M, t1, t2, such that t =
(t0,M) × t1 → t2 and t′ = (t0,M) × t1 → t2. Thus,
S(V) ≤ S(V ′).

(d) If V ′ ≤ [m : (V1, ψ)], then by Rule 1, V ≤ [m : (V1, ψ)].
Since C is consistent, UpperC(V) ⊇ UpperC(V

′) and they
do not contain int or function types. Also, by the reasoning
similar to case 2, S(V) = t and S(V ′) = t′ for some
t and t′, where t(m) = (t1, ψ

′) and t′(m) = (t1, ψ
′′)

for some t1. Also, ψ′ ≤ ψ′′ since if ψ′′ = •, then by the
definition of Solution, we must assign • to ψ′ as well. Thus,
S(V) ≤ S(V ′).

5. V ≤M V ′.
Since C is closed, from Rule 7 and 8, [m : (V ′′, ψ)] ∈
UpperC(V) iff ∃[m : (V ′′, ψ′)] ∈ UpperC(V

′), where
ψ ≤ ψ′. Also, from Rule 11, if [m : (V ′′, •)] ∈ UpperC(V),
C −→A C, and m ∈ M is not in C then [m : (V ′′, •)] ∈
UpperC(V

′). Since C is AClosed and m ∈M is not in C, m 6∈
S(M). Thus, for m 6∈ S(M), S(V)(m) = S(V ′)(m). Note
that if m is not a member in S(V), then S(V)(m) = undef.
Moreover, by Rule 9, if m ∈ M and V ′ ≤ [m : (V ′′, ◦)]
are in C, then V ≤ [m : (V ′′, •)] is in C. By Lemma D.1, if
m ∈ M and V ≤M V ′ are in C, then V ′ ≤ [m :] is in
C. By Rule 7 and 8, there exists V ′ ≤ [m : (V ′′, ◦)] in C.
Therefore, if m ∈ S(M), then S(V)(m) = (S(V ′′), •) and
S(V ′)(m) = (S(V ′′), ψ).
Thus, by the definition of ≤M , we have S(V) ≤S(M) S(V ′).

Lemma 4.2 If C is satisfiable, then Closure(C) is consistent.

Proof. We show that if S is a solution to C and C −→A C′ or
C −→B C′, then S is a solution to C′ as well. We perform a case

analysis based on the closure rules used. Since Rule 10 uses Rule 1–
9, we do not analyze it as a separate case.

Rule 1 In this case, ifU ≤ V, V ≤W ∈ C, thenU ≤W ∈ C′. By
the definition of subtyping relation, it is transitive. Therefore, if
S(U) ≤ S(V) and S(V) ≤ S(W), then S(U) ≤ S(W).

Rule 2 If int ≤ V ∈ C, then int ≤ S(V) and S(V) = int ≤ int.
Rule 3 If V ≤ int ∈ C, then S(V) ≤ int and int ≤ S(V) = int.
Rule 4 If V ≤ [m : (V ′, ψ′)], V ≤ [m : (V ′′, ψ′′)] ∈ C, then

V ′ ≤ V ′′, V ′′ ≤ V ′ ∈ C′. Since S(V) ≤ [m : (S(V ′), ψ′)]
and S(V) ≤ [m : (S(V ′′), ψ′)], by subtyping rules on object
types, if S(V) = (τ, ψ), then τ = S(V ′) = S(V ′′). Thus,
S(V ′) ≤ S(V ′′) and S(V ′′) ≤ S(V ′).

Rule 5 If V ≤ (V0,M) × V1 → V2, V ≤ (V ′0 ,M′) × V ′1 →
V ′2 ∈ C then V0 ≤ V ′0 , V

′
0 ≤ V0, V1 ≤ V ′1 , V

′
1 ≤ V1, V2 ≤

V ′2 , V
′
2 ≤ V2,M = M′,M′ = M ∈ C′. By subtyping rules

on function types, if S(V) = (t,M)×τ1 → τ2, then S(M) =
S(M′) = M , t = S(V0) = S(V ′0), τ1 = S(V1) = S(V ′1),
and τ2 = S(V2) = S(V ′2). Thus, S solves C′.

Rule 6 If m ∈ Mj , j ∈ {1..n},M =
⋃
i∈1..nMi ∈ C, then

(m ∈ M) ∈ C′. Since S is a solution to C, we have m ∈
S(Mj) and S(M) =

⋃
i∈1..n S(Mi). Thus, m ∈ S(M).

Rule 7 If V ≤M V ′, V ≤ [m : (V ′′, ψ)] ∈ C, then V ′ ≤
[m : (V ′′, ◦)] ∈ C′. Since S(V) ≤S (M)V ′ and S(V) ≤
[m : (S(V ′′, ψ)], by definition of ≤M , if m 6∈ S(M), then
S(V)(m) = S(V ′)(m) = (τ, ψ′) for some τ and ψ′, which
means S(V ′′) = τ . If m ∈ S(M), then S(V ′)(m) = (τ, ◦)
and S(V)(m) = (τ, •). In both cases, S(V ′) ≤ [m :
(S(V ′′), ◦)].

Rule 8 If V ≤M V ′, V ′ ≤ [m : (V ′′, ψ)] ∈ C, then V ≤
[m : (V ′′, ψ)] ∈ C′. If m 6∈ S(M), then S(V)(m) =
S(V ′)(m), and together with S(V ′) ≤ [m : (S(V ′′), ψ)],
we have S(V) ≤ [m : (S(V ′′), ψ)]. If m ∈ S(M), then
S(V)(m) = (τ, •) and S(V ′)(m) = (τ, ψ′) for some τ and
ψ′. Therefore, S(V) ≤ [m : (S(V ′′), ψ].

Rule 9 If V ≤M V ′ ∈ C and m ∈ M ∈ C, then V ′ ≤ [m :
(V ′′, ◦)], V ≤ [m : (V ′′, •)] ∈ C′.
From S(V) ≤S(M) S(V ′) and m ∈ S(M), by the definition
of ≤M , S(V)(m) = (τ, •) and S(V ′)(m) = (τ, ψ) for some
τ and ψ. Since V ′′ is fresh, we can let S(V ′′) = τ . Therefore,
S(V) ≤ [m : (S(V ′′), •)] and S(V) ≤ [m : (S(V ′′), ◦].

Rule 11 If V ≤M V ′, V ≤ [m : (V ′′, •)] ∈ C, C −→A C,
and (m ∈ M) 6∈ C, then V ′ ≤ [m : (V ′′, •)] ∈ C′.
Since C is AClosed and (m ∈ M) 6∈ C, m 6∈ S(M). From
S(V) ≤S(M) S(V ′), by the definition of ≤M , S(V)(m) =
S(V ′)(m). Also from S(V) ≤ [m : S(V ′′, •)], we have
S(V ′) ≤ [m : (S(V ′′), •)].

By the induction, we know that if C is satisfiable, then so is
Closure(C). It is clear from the definitions of constraint satisfiabil-
ity and consistency that Closure(C) is consistent as well.

Theorem 4.3 Given a program P where E `inf P | C, P is typable
iff Closure(C) is consistent.

Proof. By Lemma 4.2 and 4.1, we know that C is satisfiable iff
Closure(C) is consistent. Thus, we only need to show that P is
typable iff C is satisfiable.

We first show that if C is satisfiable, then ∃Γ such that Γ ` P .
Let S be a solution to C and S(E) = {z 7→ τ | ∀z ∈

dom(E), τ = S(E(z))}, where S(V → V ′) = S(V)→ S(V ′).
Since the inference rules have the same structure as the typing rules,
it is clear that S(E) ` P . Specifically, if E `inf s ‖ E′ | C′, then
S(E) ` s : S(V) ‖ S(E′).

Next we show that if Γ ` P , then C is satisfiable. If E `inf
P | C, we can construct a solution to each variable in C. For each
z ∈ dom(E), let S(E(z)) = Γ(z) and for each F ∈ dom(E),
if E(F) = V → V ′ and Γ(F) = τ → t, then S(V) = τ and
S(V ′) = t. If E `inf s ‖ E′ | C′ and Γ ` s ‖ Γ′, for each
z ∈ dom(E) and if E(z) ∈ C′, then let S(E(z)) = Γ(z). For
each z ∈ dom(E′) and if E′(z) ∈ C′, then let S(E′(z)) = Γ′(z).
Also, S(E(l)) = Γ(l) and S(E′(l)) = Γ′(l).

E. Proof for the extension to allow strong update
To prove type soundness, we modify the program invariant slightly.
The main change is that if two singleton-type variables hold the
same object, then they must have the same type.

∀y, y′ ∈ dom(χ). χ(y) = χ(y′) ∧ Γ(y) = ς ∧ Γ(y′) = ς ′

⇒ ς = ς ′

∀ι. ι ∈ dom(Σ)⇔ ι ∈ dom(H)
∀y. y ∈ dom(Γ)⇔ y ∈ dom(χ)
∀ι ∈ dom(H). Σ,Γ ` H(ι) : Σ(ι)

∀y ∈ dom(χ). Σ,Γ ` χ(y) : Γ(y) ∀Fn ∈ χ(ft). Γinit ` Fn
Σ,Γ ` H,χ

Also, the environment Σ now maps each object label ι to a single-
ton type ς . Correspondingly, we define

∀m. ς ≤ [m : (τ, •)])⇒ Σ,Γ ` o(m) : τ

Σ,Γ ` o : ς

The judgment Σ,Γ ` o : ς says that each member definite or
∗ member of ς is defined in o, and ς may have some potential
members not yet defined in o. In addition, we define a type rule
to allow object labels to have singleton types.

Σ(ι) ≤ ς
Σ,Γ ` ι : ς

A singleton type ς is a subtype of ς ′ if they have the same set
of ∗ members but some of the definite members in ς are marked as
potential in ς ′.

ς(m) = (τ, ψ)⇔ (ς ′(m) = (τ, ψ′) ∧ (ψ = ψ′ ∨ • ≤ ψ ≤ ψ′)
ς ≤ ς ′

Lemma E.1. If Σ,Γ ` H,χ and Γ ` z : τ ‖ Γ′, then ∃Σ′ such
that

1. Σ′,Γ′ ` χ(z) : τ
2. Σ′,Γ′ ` H,χ, and
3. ∀ι ∈ dom(Σ), Σ′(ι) ≤ Σ(ι).

Proof. By the definition of Γ ` z : τ ‖ Γ′, either Γ(z) ≤ τ and
Γ′ = Γ, or Γ(z) = ς ↓ ς ′, ς ′ ≤ τ , and Γ′ = [ς ′/ς]Γ.

The former case is trivial because Γ(z) ≤ τ and Σ′ = Σ.
For the latter case, let χ(z) = ι. From Σ,Γ ` H,χ, we have

Σ(ι) ≤ ς , which means that the only difference between them is
that some definite members of Σ(ι) are potential in ς . Therefore,
we can find a ς ′′ such that Σ′ = Σ[ι 7→ ς ′′] where Σ(ι) ↓ ς ′′ and
ς ′′ ≤ ς ′ ≤ τ . By the definition of ↓, if ς ≤ t for some t, then
ς ′′ ≤ t. Also from Σ,Γ ` H,χ, if Γ(y) = ι, then either Γ(y) = t
for some t or Γ(y) = ς . Thus, Σ′,Γ′ ` χ(y) : Γ(y) if χ(y) = ι.

For each ι′ where H(ι′)(m) = ι, if Σ(ι′)(m) = (t,), then
Σ(ι) ≤ t. From ς ↓ ς ′ and Σ(ι) ↓ ς ′′, we have ς ′′ ≤ t. Thus,
Σ′,Γ′ ` H(ι′) : Σ′(ι′).

Finally, from ς ↓ ς , ς ′ and ς have the same set of members that
are definite or labeled with ∗. Thus, Σ′,Γ′ ` H(ι) : ς ′.

We now show that a well-typed program does not access unde-
fined object members.

Lemma E.2. If Σ,Γ ` H,χ and Γ ` s ‖ Γ′, then H,χ, s 6;
error, and ifH,χ, s; H ′, χ′, then ∃Σ′ such that Σ′,Γ′ ` H ′, χ′.

Proof. We prove by induction and only show the three cases where
the type rules are changed. For this proof, we need an additional
invariant that for each ι ∈ dom(Σ), if 6 ∃y ∈ dom(χ) that χ(y) = ι
and Γ(y) = ς , then Σ′(ι) ≤ Σ(ι).

T-New Let s be x = new F (z) and χ(F) = function F (x′){s′}.
From Rule (T-Ctr), ∃ ςthis, τarg such that Γ1 = Γinit[this 7→
ςthis, x

′ 7→ τarg], Γ1 ` s ‖ Γ2, Γ2(this) ↓ ςres , and
Γ(F) = τarg → ςres . By Rule (T-New), Γ ` z : τarg ‖ Γ′′,
Γ′ = Γ′′[x 7→ ς], and ςres ↓ ς .
Let ι be a new object label, χ1 = {this 7→ ι, x′ 7→ χ(z), ft 7→
χ(ft)}, and H1 = H[ι 7→ []].
From Lemma E.1, ∃Σ′′ such that Σ′′,Γ′′ ` H,χ and Σ′′,Γ′′ `
χ(z) : τarg . From def(ςthis) = ∅, it is clear that Σ′′[ι 7→
ςthis],Γ1 ` H1, χ1. By the induction hypothesis, there exists
Σ2,Γ2 such that ifH1, χ1, s; H2, χ2, then Σ2,Γ2 ` H2, χ2.
By the induction hypothesis and Lemma E.1, for each ι ∈
dom(Σ), since there does not exists y of singleton type with
χ1(y) = ι, we have Σ2(ι) ≤ Σ(ι). Therefore, Σ2,Γ

′′ ` H2, χ.
Since Σ′(ι) ≤ Γ2(this) ↓ ςres ↓ ς = Γ′(x) and x is
the only variable of singleton type that points to ι, we have
Σ′,Γ′ ` H2, χ

′. where Σ′ = Σ2[ι 7→ ς] and χ′ = χ[x 7→ ι].
T-Upd Let s be y.m = z. By Rule T-Upd, we have Γ ` z :

τ ‖ Γ′. We only consider the case that Γ′(y) = ςy , Γ′′ =
[ς ′y/ςy]Γ′, and ς ′y ≤(m,τ) ςy . By Rule (R-Upd), if H(χ(y)) =
o, thenH ′ = H[χ(y) 7→ o[m 7→ χ(z)]]. From Γ ` z : τ ‖ Γ′

and by Lemma E.1, ∃Σ′ such that Σ′,Γ′ ` H,χ.
Let Σ′(χ(y)) = ς , ς ′ ≤(m,τ) ς , and Σ′′ = [ς ′/ς]Σ′. From
Σ′,Γ′ ` H,χ, we have ς ≤ ςy . It is clear that ς ′ ≤ ς ′y .
Therefore, Σ′′,Γ′′ ` H ′, χ.

T-Invk Let s be x = y.m(z). By Rule T-Invk, Γ(y) ≤ [m :
(ty.m, •)], ty.m ≤ (tthis,M) × τarg → τres , and Γ ` z :
τarg ‖ Γ′. We only consider the case that Γ′(y) = ςy ,
Γ′ ` y : this ‖ Γ1, ς ′y ≤M Γ1(y), and Γ′′ = [ς ′y/Γ1(y)]Γ1.
By Lemma E.1, ∃Σ′ such that Σ′,Γ1 ` H,χ.
Let lookup(f, χ(ft)) = function f(x′){s; return z′}. By Rule
R-Invk, if χ′ = {this 7→ χ(y), x′ 7→ χ(z), ft 7→ χ(ft)} and
H,χ′, s′ ; H ′, χ′′, then H,χ, x = y.m(z) ; H ′, χ[x 7→
χ′′(z′)]. Similar to the proof for Lemma 3.1, we can show
that ∃Σ′′,Γ2 such that Σ′′,Γ2 ` H ′, χ′′. By the induction
hypothesis, ∀ι ∈ dom(Σ′), Σ′′(ι) ≤ Σ′(ι). Together with
ς ′y ≤M Γ1(y) and Γ′′ = [ς ′y/Γ1(y)]Γ1, we have Σ′′,Γ′′ `
H ′, χ[x 7→ χ′′(z′)].

We now show that the constraint set generated from a program
is satisfiable iff its closure is consistent.

Lemma E.3. If E `inf P : C′ and C = Closure(C′) is consistent,
then C is satisfiable

Proof. We only show that S = Solution(C) satisfies four types of
constraints in C: V ≤(m,V) V , V ≤ V , V ↓ V ′, and V ≤M V ′.
The satisfiability of other types of constraints can be proved the
same way as in the proof of Lemma 4.1.

Consider the constraint set C′, we can create a graph G with
each V as a vertex and a directed edge from V ′ to V if V ≤(m,V)

V ′, V ≤M V ′, or V ′ ↓ V is in C′. Since C′ is generated from a
program, G is in fact a collection of simple paths. Therefore, by
Rule 14, 16, and 17, if V ′ can reach V in G, then UpperC(V ′) ⊆

UpperC(V). Consequently, if C1 is the AClosure of C′ and C1 −→B

C2, then C2 is also AClosed.

1. Suppose V ≤(m,V) V ′ ∈ C. We need to show S(V) ≤(m,S(V))

S(V ′). As explained above, V is a vertex on a simple path in
G. Also, by the type inference rules, V may not be in another
constraint of the form V ≤ V . Thus, V ′ ≤ [m′ :] ∈ C iff
V ≤ [m′ :] ∈ C for any m′ 6= m.
Now we consider three cases. The first case is when m is not a
member of S(V ′). By Rule 13, V ≤ [m : (V, ∗)] ∈ C. Then,
S(V) = (S(V), ∗). The second case is when S(V ′)(m) =
(S(V ′), ∗). In this case, C does not have constraint of the
form V ′ ≤ [m : (V ′, ◦)] and therefore, Rule 14 does not
add constraint of the form V ≤ [m : (V ′, ◦)] to C and
S(V)(m) = (S(V), ∗). The last case is when S(V ′)(m) =
(S(V), ψ) where • ≤ ψ. By the definition of Solution, C
contains constraint of the form V ′ ≤ [m : (V ′, ◦)] and Rule 14
adds V ≤ [m : (V ′, ◦)] to C. In this case, S(V)(m) =
(S(V), •). Therefore, S(V) ≤(m,S(V) S(V ′).

2. Suppose V ≤ V ∈ C. If S(V)(m) = (S(V ′), ψ), there exists
a constraint of the form V ≤ [m : (V ′, ψ)] in C. By Rule 15,
V ≤ [m : (V ′, ψ)] and V ≤ [m : (V ′, ◦)] are in C. Thus,
S(V)(m) = (S(V ′), ψ′) and • ≤ ψ′ ≤ ψ.

3. Suppose V ↓ V ′ be in C. By Rule 16, if V ≤ [m : (V, ψ)] ∈ C,
then V ′ ≤ [m : (V, ψ)] ∈ C. As explained above, V ′ is
a vertex on a simple path in G. By the inference rules, V ′
may also appear in a constraint of the form V ′ ≤ V ′. But
by the consistency rules, V ′ ≤ [m : (V, ∗)] 6∈ C. Thus,
V ≤ [m : (V, ∗)] ∈ C iff V ′ ≤ [m : (V, ∗)] ∈ C. By Rule 21, if
V ′ ≤ [m : (V, •)] ∈ C, then V ≤ [m : (V, •)] ∈ C.
Therefore, ∀m ∈ dom(S(V ′)), either S(V)(m) = (τ, ψ),
S(V ′)(m) = (τ, ψ′), ψ ≤ ψ′ ≤ • or ψ = ψ′ = ◦, or
S(V)(m) = undef, S(V ′)(m) = (τ, ◦). Thus, S(V) ↓ S(V ′).

4. Suppose V ≤M V ′ ∈ C. As explained above, V is on a simple
path in G. Also, by the inference rules, V does not appear in
a constraint of the form V ≤ V . Moreover, the constraints
of the form V ≤ [m : (V, ∗)] are added only by Rule 13,
while the constraints of the form V ≤ [m : (V, ◦)] are added
only by Rule 15. Thus, by Rule 17, V ≤ [m : (V, ψ)] iff
V ′ ≤ [m : (V, ψ)] where ψ = ∗ or ψ = ◦. Similar to
Lemma D.1, we can show that if m ∈ M and VMV ′ are in
C, then V ′ ≤ [m : (V, ◦)]. for some V . Thus, by Rule 18
and 19, for m 6∈ S(M), V ≤ [m : (V, •)] ∈ C iff V ≤
[m : (V, •)] ∈ C, and for m ∈ S(M), V ≤ [m : (V, •)] ∈ C
iff V ′ ≤ [m : (V, ◦)] ∈ C. Thus, S(V) ≤S(M) S(V ′).

Lemma E.4. If C is satisfiable, then Closure(C) is consistent.

Proof. We show that if C is satisfiable, then its closure is also
satisfiable, which implies consistency. For this, we need to prove
that if S is a satisfiable solution to C, and C −→A C′ or C −→B C′,
then S is also a solution to C′. We will only consider the additional
closure rules for the extended type system.

Rule 12 If {V ≤ [m : (V,)],V ≤ [m : (V ′,)]} ⊆ C, then
{V ≤ V ′, V ′ ≤ V } ⊆ C′. Since S solves C, S(V) = S(V ′),
which implies S(V) ≤ S(V ′) and S(V ′) ≤ S(V).

Rule 13 If V ≤(m,V) V ′ ∈ C, then V ≤ [m : (V, ∗)] ∈
C′. By definition, S(V) ≤(m,S(V)) V ′ implies S(V)(m) =
(S(V), ψ) where ψ ≤ •. Thus, S(V) ≤ [m : (S(V), ∗)].

Rule 14 If V ≤(m,V) V ′ and V ′ ≤ [m′ : (V ′, ψ)] are in C,
then V ≤ [m′ : (V ′, ψ)] ∈ C′ where m′ 6= m or ψ = ◦.
Suppose m′ 6= m. Since S(V) ≤(m,S(V)) S(V ′) and S(V ′) ≤
[m′ : (S(V ′), ψ)], S(V)(m′) = S(V ′)(m′) = (S(V ′), ψ).

Suppose ψ = ◦. Then, S(V)(m′) = (S(V ′), ψ′) and • ≤ ψ′.
Therefore, S(V) ≤ [m′ : (S(V ′), ψ)].

Rule 15 If V ≤ V and V ≤ [m : (V ′, ψ)] are in C, then
V ≤ [m : (V ′, ψ)] and V ≤ [m : (V ′, ◦)] are in C′. Since
§(V) ≤ S(V) ≤ [m : (S(V ′), ψ)], we have ψ 6= ∗ and
S(V) ≤ [m : (S(V ′), ψ)] and S(V) ≤ [m : (S(V ′), ◦].

Rule 16 If V ↓ V ′ and V ≤ [m : (V, ψ)] are in C, then V ′ ≤ [m :
(V, ψ)] ∈ C′. Since S(V) ↓ S(V ′), if S(V)(m) = (S(V), ψ1),
then S(V ′)(m) = (S(V), ψ2) and ψ1 ≤ ψ2 ≤ • or ψ1 =
ψ2 = ◦. Thus, S(V ′) ≤ [m : (S(V), ψ)].

Rule 17 If V ≤M V ′ and V ′ ≤ [m : (V, ψ)] are in C, then
V ≤ [m : (V, ψ)] ∈ C′. Since S(V) ≤S(M) S(V ′), for
m 6∈ S(M), S(V)(m) = S(V ′)(m), and for m ∈ S(M),
S(V)(m) = (τ, •), S(V ′)(m) = (τ, ψ′), and • ≤ ψ′. Thus,
S(V) ≤ [m : (S(V), ψ)].

Rule 18 If V ≤M V ′, m ∈ M, and V ′ ≤ [m : (V, ◦)] are in
C, then V ≤ [m : (V, •)] ∈ C′. Since S(V) ≤S(M) S(V ′)
and m ∈ S(M), S(V)(m) = (τ, •). Therefore, S(V) ≤ [m :
S(V), •)].

Rule 19 If C −→A C, {V ≤M V ′,V ≤ [m : (V, •)]} ∈ C,
and {m ∈ M} 6⊆ C, then V ′ ≤ [m : (V, •)] ∈ C′. Since
S(V) ≤S(M) S(V ′) andm 6∈ S(M), S(V)(m) = S(V ′)(m).
Therefore, S(V) ≤ [m : (S(V), •)] implies S(V ′) ≤ [m :
(S(V), •)]. Also, as shown earlier, C′ remains AClosed so that
the closure of C′ will not add m ∈ M, which could invalidate
S as a satisfiable solution.

Rule 20 If C −→A C, {V ≤(m,V) V ′,V ≤ [m′ : (V ′, •)]} ∈
C, then V ′ ≤ [m′ : (V ′, •)] ∈ C′ where m′ 6= m.
Since S(V) ≤(m,S(V) S(V ′) and m′ 6= m, S(V)(m′) =
S(V ′)(m′). Thus, S(V ′) ≤ [m′ : (S(V ′), •)].

Rule 21 If C −→A C, {V ↓ V ′,V ′ ≤ [m : (V, •)]} ∈ C,
then V ≤ [m : (V, •)] ∈ C′. Since S(V) ↓ S(V ′) and
S(V ′) ≤ [m : (S(V), •)], S(V)(m) = (S(V), ψ) and ψ ≤ •.
Thus, S(V) ≤ [m : (S(V), •)].

