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Abstract—This paper presents a constraint-based type infer-
ence algorithm for a subset of the JavaScript language. The goal
is to prevent accessing undefined members of objects. We define
a type system that allows explicit extension of objects through
add operation and implicit extension through method calls. We
prove that a program is typable if and only if we can infer its
types. We also extend the type system to allow strong updates
and unrestricted extensions to new objects.

I. INTRODUCTION

JavaScript is a widely used scripting languages for Web
applications. As a dynamic language, it has some flexible
language features such as method update and method/field
additions. These features are also potential sources of runtime
errors such as accessing undefined members of objects. Since
JavaScript does not have static types, there is no way to
determine statically which members have been added to an
object at each program point and programmers have to rely on
documentation or other tools to avoid these types of mistakes.

Past research have proposed the use of static types to keep
track of object extensions and there are some design variations.
One approach, taken by Anderson et al.’s type inference algo-
rithm [1], is to use flow-sensitive object types that distinguish
two types of object members: definite members (ones that
have been defined) and potential members (ones that may
be defined later). Only definite members may be accessed
while potential members may become definite after object
extensions. This design allows objects be extended at any time.
Another approach, seen in Recency Types [2] and Bono and
Fisher’s calculus with object extensions [3], is to use two sets
of object types: one set allows object extension while the other
set does not. The idea is to model objects at initialization stage
using extensible object types and after that, the objects are
given fixed types. With this design, the extensions made to
objects at initialization stage are not restricted by the initial
types of the objects. To support this behavior and also allow
objects be extended after initialization stage, it is possible to
have features of both approaches in one type system [4].

In this paper, we present a type system and a type inference
algorithm based on the last design choice to have two sets
of object types. One set consists of singleton types assigned
to new objects in local scope to allow strong updates where
members of an object can be replaced by values of different
types and to permit unrestricted extensions. The other set
consists of flow-sensitive obj-types that distinguish definite
and potential members. We allow a variable of a singleton

type and a variable of an obj-type to point to the same object
though the two types must be compatible so that their common
members cannot have strong updates. However, the variable
of the singleton type can still have strong update on other
members and have unrestricted extensions.

Our type system keeps track of members added to an object
by both explicit add operation, and implicit extension through
function parameters and self-inflicted extension [4], which is
the extension that an object made to itself upon receiving a
message as shown in the following example.

A. Motivating examples

1 function Form(a) {
2 this.id = a;
3 this.set = setter;
4 }
5 function setter(b) {
6 this.handle = b;
7 return 0;
8 }
9 function handler(c) {

10 // do something
11 return 0;
12 }
13 // main
14 x = new Form(1);
15 z = x.handle(1); // error
16 y = x.set(handler);
17 z = x.handle(1); // OK

Fig. 1. Example of self-inflected extension

Figure 1 is an example of self-inflicted extension, where
Form is a constructor function that return new objects with a
field id and a method set, which adds a handle method to the
current object. In the main program, when handle is called
at line 15, there should be a runtime error since handle is
not yet defined in the Form object x. However, it is OK to
call handle for the 2nd time (line 17) since set has added
this method to x. Anderson’s algorithm [1] does not allow
this call since it only considers members added to objects
by explicit add operations while handle is added indirectly
by the method set. Our type system keeps track of both
types of object extensions. Consequently, it can determine that
the variable x at line 17 refers to an object with the method
handle.



We also consider an extension to our type system to support
strong updates to new objects where an object’s member
may be replaced by a value of a different type. Since obj-
types are not extensible, object extensions are limited by the
potential members in the object types. Also, strong updates
to definite members are not allowed. This is not a problem
for an empty object since we can give it a type with any
potential members. However, new objects instantiated from a
constructor function have the same type – the return type of
the constructor function, so that potential extensions made to
these objects are limited by this type – the types of the definite
members cannot be changed. JavaScript allows constructor
functions to return any objects though, in many cases, the
expected behavior of a constructor function is to return a new
object each time it is called through the new operator. For
other cases, one can make an ordinary function call instead.
Therefore, we only consider this behavior of the constructor
functions. We extend our type system with a kind of singleton
types to support strong updates and unrestricted extensions to
new objects.

1 function F(x) {
2 this.a = 1;
3 this.b = "one";
4 }
5 x1 = new F(0);
6 x2 = new F(0);
7 x1.b = true;
8 x1.c = 2;
9 x2.c = false;

Fig. 2. Strong updates and unrestricted extensions

For example, the program in Figure 2 creates two F objects
x1 and x2, and extends x1 and x2 with field c of integer
type and boolean type respectively. Also, the member b of
object x1 received a strong update – its type is changed from
string to boolean. We can allow this by assigning singleton
types to x1 and x2.

In summary, we make the following contributions:

• a sound and complete type inference algorithm for a
small subset of JavaScript language to keep track of new
members added to objects through add operation and
implicit extensions.

• an extension to our inference algorithm to allow strong
updates and unrestricted extensions to new objects

In the rest of paper, we first give an informal discussion
of our approach in Section II. Next, we formalize a type
system on a small subset of JavaScript to support self-inflicted
extension. We present the syntax and type rules in Section III.
We explain the details of type inference algorithm and its
correctness in Section IV. We explain the extension to add
singleton types to new objects in Section V. The operational
semantics, inference rules, and a type inference example are
in the appendix.

II. APPROACH

We follow the design of Anderson’s type system [1] by
labeling each member of an object type as potential or
definite to indicate whether the member is possibly defined
or definitely exists respectively. The labels are inferred along
with the types of a program.

Consider the example in Figure 1, the type of the variable
x at line 14 is

tx = [id : (int, •), set : (tsetter, •), handle : (thandler, ◦)]

where • labels definite members while ◦ labels potential
members. Each distinct object type and function type has a
name and is defined with an equation, where the right-hand-
side shows the structure of the type. Each type name may be
referenced in the definitions of some other types.

We support width subtyping of object types but not depth
subtyping. For example, type tx is a subtype of t where t =
[set : (tsetter, •)]. Also, it is safe to give an object with a
member m a type that labels m as potential. For example, t is
a subtype of t′ where t′ = [set : (tsetter, ◦)].

Notice that the handle method of tx is a potential method
only and it is illegal to call methods with such a label (e.g.
line 15 of Figure 1). A potential member becomes definite
after an assignment. The function call at Line 16 adds the
handle method to x. The type of x at line 17 is

t′x = [id : (int, •), set : (tsetter, •), handle : (thandler, •)].

At this point, it is then safe to call handle. In our type system,
we represent t′x as an extended type – (tx, {handle}), where
the set {handle} includes the member handle added to the
object. This representation makes it easier to keep track of
members added to this pointer and function parameters.

The method call x.set(handler) updates the receiver
object x with the function handler. To obtain the informa-
tion about which members are added to the receiver object,
we define function types in the form of

τ × τ ′ → u

where τ is the type of self pointer, τ ′ and u are parameter
and return type respectively. The meta variable u ranges over
object types, function types, and primitive types while τ =
(u,M) ranges over extended types and M is ignored if u is
not an object type. In an extended type τ = (t,M) of self or
function parameter, M is the set of members added to self or
the function parameter during the function call. The type of
setter is then

tsetter = (t, {handle})× (thandler, ∅)→ int

where t and thandle are defined as

t = [handle : (thandler, ◦)]

thandler = (top, ∅)× (int, ∅)→ int

where top is the super type of all object types.
To allow strong updates and unrestricted extensions as in

Figure 2, we define a form of singleton types ς , where we



label object members that can receive strong update with ∗.
As shown below, ςF is the return type of the constructor F and
ςx1 and ςx2 are the types of x1 and x2 after the last assignment.

ςF = @[a : (int, ∗), b : (string, ∗)]

ςx1 = @[a : (int, ∗), b : (bool, ∗), c : (int, ∗)]

ςx2 = @[a : (int, ∗), b : (string, ∗), c : (bool, ∗)]

The singleton types are only assigned to new objects and
local variables that reference these objects. For simplicity, the
types of object members, function parameters, and function
return types (other than the constructor function’s return type)
are obj-types. We keep track of the aliases of singleton types
within local scope and they receive obj-types once they are
assigned to some objects’ fields or passed as parameters to
other functions. The singleton type of an object has to be
updated once the object is assigned to some variable of obj-
types. Consider the following example where the variable x
is passed to function f.

1 function f(y) {
2 y.a = 1;
3 return y;
4 }
5 x = new F(0);
6 z = f(x);
7 x.b = true;
8 x.c = 2;

If the type of x starts with ςx, then it becomes ς ′x after the call.

ςx = @[a : (int, ∗), b : (string, ∗)],
ς ′x = @[a : (int, •), b : (string, ∗)]

In effect, the type system has to change the label of x.a so
that it can no longer receive strong updates. Still, variable x
can have strong updates on its member b and be extended
with additional members so that its type eventually becomes

ς ′′x = @[a : (int, •), b : (bool, ∗), c : (int, ∗)].

A singleton type may also have potential members as well.
Consider the example below where the variable y may point
to the object x1 or x2 and y is assigned a new member c.

1 x1 = new F(0);
2 x2 = new F(0);
3 x1.b = true;
4 if (z > 0) y = x1; else y = x2;
5 y.c = 1;

The variable y is given different singleton types in the
branches and at line 5, we have to merge the two singleton
types into an obj-type ty = [c : (int, ◦)] since a singleton type
cannot be assigned to more than one object. The types of x1
and x2 after the if statement become

ςx1 = [a : (int, ∗), b : (bool, ∗), c : (int, ◦)]
ςx2 = [a : (int, ∗), b : (string, ∗), c : (int, ◦)]

since both of them must be subtype of y, which has the
potential member c. After the if statement, the variables x1

and x2 can still be extended with new members and their a
and b members can still receive strong updates.

Finally, the following example illustrates the interaction
between singleton type and implicit extensions.
1 function G(i) {
2 this.a = i;
3 this.m = g;
4 }
5 function g(j) {
6 this.b = j;
7 return this;
8 }
9 x = new G(0);

10 y = x.m(1);

The variable x’s type on line 9 is

ςx = @[a : (int, ∗), m : (tg, ∗)],

where tg = (t, {b}) × (int, ∅) → t′, t = [b : (int, ◦)], and
t′ = [b : (int, •)]. After line 10, the type of x becomes

ς ′x = @[a : (int, ∗), m : (tg, ∗), b : (int, •)]

The variable x is extended with a member b through implicit
extension. In fact, y is an alias of x but y has an obj-type
since we do not track singleton type across function calls.

III. FORMALIZATION

In this section, we present a formalization of our type sys-
tem. The details of type inference are covered in Section IV.
This formalization is for implicit extension only. Additions to
the type system are discussed in Section V.

A. Syntax
We select a small subset of the JavaScript language that

includes member select, member update/add, method calls,
object creation, and branch statement with syntax shown in
Figure 3. We distinguish constructor function and regular
function with the naming convention that constructor function
name starts with an upper case letter. We do not model function
calls since its behavior is similar to that of method calls when
the receiver object is empty. In fact, regular function calls in
JavaScript will substitute this pointer of the called function
with the global object [5].

The syntax of a function body consists of a sequence of
statements and a return statement. For simplicity, we write
object creation. member select, and method call in the form
of assignments and each expression is assigned to a variable
so that there is no nested expressions in the statements. The
body of a constructor function has a sequence of statements
but no return statement since each time a constructor function
is called through new operator, this pointer of the function
is given a new empty object and after the body is executed,
this object is returned.

The meta variable f ranges over the names of regular
functions, F ranges over the names of constructor functions,
and m ranges over member names. A program P consists
of a one or more function/constructor definitions and a main
statement s. For simplicity, we assume that function parameter
(denoted by xp) is read-only.



P ::= Fni
i∈1..n s Program

Fn ::= function f(xp){s; return z} function
| function F (xp){s} constructor

s ::= statements
var x variable declaration

| x = z assignment
| x = new F (z) new object
| x = y.m member select
| x = y.m(z) method call
| y.m = z member update/add
| s; s′ sequence
| if(z) {s} else {s′} if statement

y ::= x local variables
| xp function parameter
| this self reference

z ::= y
| f function identifier
| n integer
| b boolean

Fig. 3. Syntax

B. Static semantics
The meta variable u ranges over four kinds of types:

function type, object type, primitive type (such as int and
bool), and a top type.

u ::= t | int | bool | top
τ ::= (u,M) extended types

The variable t ranges over the names of function and object
types, which are defined by equations of the form:

t = [mi : (ui, ψi)
i∈i..n

] object type
t = τ × τ ′ → u function type

ψ ::= ◦ potential
| • definite

The meta variable ψ ranges over the label ◦ and •, which
indicates whether a member is potentially or definitely present.

a) Subtyping: The subtyping relation is reflexive and
transitive.

u ≤ u
u ≤ u′ u′ ≤ u′′

u ≤ u′′
τ ≤ u u ≤ u′

τ ≤ u′

All object and function types are subtype of top. An extended
type (u,M) is a subtype of u if u is not an object type.

t ≤ top (int, ) ≤ int (bool, ) ≤ bool (tf , ) ≤ tf
where tf represents function types.

A function type is a subtype of another one if they are
structurally equivalent. For simplicity, we do not have covari-
ant return type and contravariant parameter type for function
types. Let ft range over τ × τ ′ → u.

t = ft t′ = ft

t ≤ t′
t = ft

t ≤ ft

t = ft

(t, ) ≤ ft

The expression t(m) returns the type information of mem-
ber m in object type t if it is defined in t, otherwise, t(m) is
undefined.
t = [. . .m : (u, ψ) . . .]

t(m) = (u, ψ)
t(m) = undef otherwise, where

undef is used here to denote undefined member of a type.
We define a subtyping relation between extended object

type (t,M) and object type t′ as below, where member labels
follow the partial order ψ ≤ ψ and • ≤ ◦.

∀m. t′(m) = (u, ψ′)⇒
(t(m) = (u, ψ) ∧ (ψ ≤ ψ′ ∨ m ∈M))

(t,M) ≤ t′

We also define a subtyping relation below for the convenience
of stating typing rules.

t(m) = (u, ψ) (ψ ≤ ψ′ ∨ m ∈M)

(t,M) ≤ [m : (u, ψ′)]

1) Type rules for functions and constructors: We use the
symbol Γ to represent type environment that maps variables,
function/constructor names, and constants to their types. For
any variable or name in the domain of Γ, we define

Γ = [. . . z 7→ τ . . .]

Γ(z) = τ

If the function f has type t, we let Γ(f) = (t, ∅). Also, Γ(n) =
(int, ∅) and Γ(b) = (bool, ∅) for any n and b.

A judgment of the form Γ ` s ‖ Γ′ says that the statement
s is well-typed with the environment Γ and the execution of
s will result in a (possibly new) environment Γ′.

Figure 4 shows the typing rule for program and functions,
where a program P with environment Γ is well-typed if its
functions, constructors, and main statement are well-typed
with Γ. The environment for typing a program includes the
mapping of functions and constructors to their types.

A function f is well-typed given an environment Γ if we can
construct a new environment for the function body so that it is
well-typed. In particular, Γ maps this variable (or parameter)
to an extended type with empty member set such as (u, ∅).
After the function body s is executed, the new environment
may map this (or parameter) to another extended type such
as (u,M). We use (u,M) as the type of this (or parameter)
in the function type. M is used to record the members added
to this (or parameter) in s.

For a constructor to be well-typed, the type of this pointer
before the execution of the constructor body must not have any
definite members since the constructor is always invoked with
an empty receiver object. Rule (T-Ctr) uses a function def(u)
to return the set of definite members of u, where def(t) =
{m | t(m) = ( , •)} and def(top) = ∅.

2) Type rules for statements: Figure 5 lists the type rules
for statements.

Rule (T-Dec) says that each variable declaration defines a
new variable not already in the domain of the type environ-
ment, where dom is a function that returns the domain of a



Γ ` Fni ∀i ∈ 1..n Γ ` s ‖ Γ′

Γ ` Fni∈1..ni s ‖ Γ′
T-Prog

Γ[this 7→ (uthis, ∅), xp 7→ (uarg , ∅)] ` s ‖ Γ′

Γ′(z) ≤ u Γ(f) ≤ Γ′(this)× Γ′(xp)→ u

Γ ` function f(xp){s; return z}
T-Fn

Γ[this 7→ (uthis, ∅), xp 7→ (uarg , ∅)] ` s ‖ Γ′

def(uthis) = ∅
Γ′(this) ≤ u Γ(F ) = Γ′(xp)→ u

Γ ` function F (xp){s}
T-Ctr

Fig. 4. Typing rules for program, constructor, and function

x 6∈ dom(Γ)

Γ ` var x ‖ Γ[x 7→ (u, ∅)]
T-Dec

Γ′ = Γ[x 7→ Γ(z)]

Γ ` x = z ‖ Γ′
T-Assn

Γ(y) ≤ [mj : (uj , ◦)] Γ(z) ≤ uj
Γ(y) = (t,M) M ′ ⊆M ∪ {mj}
Γ ` y.mj = z ‖ Γ[y 7→ (t,M ′)]

T-Upd

Γ(F ) = τarg → u Γ ` z : τarg ‖ Γ′

Γ ` x = new F (z) ‖ Γ′[x 7→ (u, ∅)]
T-New

Γ(y) ≤ [mj : (uj , •)]
Γ ` x = y.mj ‖ Γ[x 7→ (uj , ∅)]

T-Sel

Γ(y) ≤ [mj : (tj , •)]
tj ≤ τthis × τarg → ures

Γ ` z : τarg ‖ Γ′ Γ; Γ′ ` y : τthis ‖ Γ′′

Γ ` x = y.mj(z) ‖ Γ′′[x 7→ (ures , ∅)]
T-Invk

Γ ` s ‖ Γ′ Γ′ ` s′ ‖ Γ′′

Γ ` s; s′ ‖ Γ′′
T-Seq

Γ ` s1 ‖ Γ1 Γ ` s2 ‖ Γ2

Γ(z) ≤ bool merge(Γ1,Γ2,Γ
′)

Γ ` if(z) {s1}else{s2} ‖ Γ′
T-If

Fig. 5. Type rules for statements

mapping. Once a variable is declared, we assign a type to that
variable in the environment though the type may be changed
later by assignments. Rule (T-Upd) applies to the member
update/add operation of the form y.mj = z. We extend the
type of y so that mj can be read after the statement is executed
(regardless of the original label of mj). Rule (T-New) uses the
return type of the constructor function to replace the type of
the variable that the new object is assigned to.

Rule (T-Sel) requires the selected member to be definite.
Rule (T-Invk) also requires the called method to be definite
and the receiver object’s type to be a subtype of this pointer
of the called method. Note that both rules involve passing
arguments to parameters that may extend the argument objects
with new members. We define the judgment Γ ` z : τ ‖ Γ′

to record the change to the type of a variable z after it is
passed as an argument to a parameter of type τ where Γ′ is the
new environment after updating the type of z. The judgment
Γ; Γ′ ` y : (u,M) ‖ Γ′′ is for similar purpose for the receiver
object y except that Γ′(y) may be different from Γ(y) if y
references the same object as the argument z does.

z = n | b | f Γ(z) ≤ u
Γ ` z : (u, ) ‖ Γ

Γ(y) ≤ u Γ(y) = (uy,My) M ′y ⊆M ∪My

Γ ` y : (u,M) ‖ Γ[y 7→ (u′,M ′y)]

Γ(y) ≤ u Γ′(y) = (uy,My) M ′y ⊆M ∪My

Γ; Γ′ ` y : (u,M) ‖ Γ′[y 7→ (uy,M
′
y)]

For example, consider the following program:
1 function f(x) {
2 this.m1 = true;
3 x.m2 = 2;
4 return x;
5 }
6 function F() {
7 this.m = f;
8 }
9 z1 = new F();

10 z2 = new F();
11 z = z1.m(z2);
12 y = z.m2;

where f has the type tf = (tthis, {m1})×(targ , {m2})→ tres ,

tthis = [m1 : (bool, ◦)]
targ = [m2 : (int, ◦)]
tres = [m2 : (int, •)] .

The type of z1 and z2 at line 10 is (tF , ∅),

tF = [m : (tf , •), m1 : (bool, ◦), m2 : (int, ◦)] .

At line 11, we apply Rule (T-Invk) with the judgment Γ ` z2 :
(targ , {m2}) ‖ Γ′ to change the environment Γ to Γ′, where
Γ = [z1 : (tF , ∅), z2 : (tF , ∅)] and Γ′ = [z1 : (tF , ∅), z2 :
(tF , {m2})]. Also, Γ; Γ′ ` z1 : (tthis, {m2}) ‖ Γ′′ produces
the environment [z1 : (tF , {m1}), z2 : (tF , {m2})]. After line
11, variable z1 has a definite member m1 and z2 has a definite
member m2.

Lastly, Rule (T-If) merges the type environments Γ1 and Γ2

generated by the branches s1 and s2 respectively into a new
environment Γ′ using the predicate merge defined below.

merge(Γ,Γ,Γ)
merge(Γ1,Γ2,Γ)

merge(Γ2,Γ1,Γ)

y 6∈ dom(Γ2) merge(Γ1,Γ2,Γ)

merge((y 7→ τ,Γ1),Γ2,Γ)

τ1 = (u,M1) τ2 = (u,M2)
merge(Γ1,Γ2,Γ) M ⊆M1 ∩M2

merge((y 7→ τ1,Γ1), (y 7→ τ2,Γ2), (y 7→ (u,M),Γ))

∀i = 1, 2. τi ≤ u τi = (ui,Mi)
u1 6= u2 merge(Γ1,Γ2,Γ))

merge((y 7→ τ1,Γ1), (y 7→ τ2,Γ2), (y 7→ (u, ∅),Γ))



A variable of the type (u,M1) and (u,M2) in each branch
maps to (u,M1∩M2) in the merged environment. This allows
us to keep track of the members added to self and parameter.
For example, y in the example below has the type (tF , {m1})
after line 7.

1 y = new F();
2 if (z) {
3 y.m1 = true;
4 y.m2 = 2;
5 } else {
6 y.m1 = false;
7 }

If a variable is mapped to (u1,M1) and (u2,M2) and u1 6=
u2, then it is mapped to (u, ∅) where (u1,M1) ≤ u and
(u2,M2) ≤ u. This is illustrated in the following example,
where the type of y in the merged environment is (ty, ∅) and
ty = [m1 : (bool, •)].
1 if (z) {
2 y = new F();
3 y.m1 = true;
4 y.m2 = 1;
5 } else {
6 y = new F();
7 y.m1 = false;
8 }
9 x = y.m1;

IV. TYPE INFERENCE

The type inference algorithm includes three steps:
1) generate type constraints from a program,
2) apply closure rules to the constraint set until it is closed

under the rules,
3) solve the closed constraint set.
The type inference rules are given in Figure 13 (see ap-

pendix D), where V ranges over type variables andM ranges
over variables that correspond to sets of object members. The
inference rules have similar structure as the typing rules. The
first three rules in Figure 13 infer constraints from programs,
functions, and constructors. The judgment E `inf P | C infers
a set of constraints C from a program P based on the initial
environment E, where E maps function and constructor names
to distinct type variables. Likewise, E `inf Fn | C generates a
set of constraints C from a function or constructor declaration
Fn based on the environment E. Note that for each constructor
function F , we create a a distinct type variable VF for the
initial type of this pointer. The inference rules make sure
that each variable in the generated constraint set is unique.

The rest of the rules in Figure 13 generate type constraints
from statements. Each judgment of the inference rule for
statements is in the form of:

E `inf s ‖ E′ | C

which generates a set of constraints C from a statement s
with initial environment E and produces another environ-
ment E′. All environment E maps constants to (Vint,M∅)
or (Vbool,M∅), constructor names to types of the form

(V,M)→ V ′, function names to types of the form (V,M∅),
and local variables to types of the form (V,M). We add the
constraints M∅ ⊆ ∅, Vint ≤ int, and Vbool ≤ bool to the
constraint set of a program.

The result of applying inference rules is a constraint set of
the forms:

U ≤W M⊆ mSet M =M′ M⊆M∪M′ M⊆M∩M′

where the meta variable U and W are defined as

U ::= V | (V,M)
W ::= bt | V | [m : (V, ψ)] | (V0,M0)× (V1,M1)→ V2,

mSet represents a set of member names such as ∅ and
{mi,mj}, and bt represents base types int or bool.

A. Closure rules

To solve a constraint set C, we first compute its closure.

Definition A constraint set C is closed if C −→A C.
Let Closure(C) = C′ if C −→∗A C′ and C′ −→A C′, where
−→A is defined by Rule 14 and −→∗A is a transitive closure
of −→A.

The closure relation −→A depends on the following rules.
Rule 1 applies transitive closure to subtyping relations.

U ≤ V, V ≤W −→ U ≤W (1)

Rule 2 to 4 ensure that a base type can only be subtype of
itself.

V ′ ≤ bt, (V ′,M) ≤ V −→ V ≤ bt (2)
V ′ ≤ bt, V ′ ≤ V −→ V ≤ bt (3)

(V,M) ≤ bt −→ V ≤ bt (4)

Rule 5 simplifies constraints for function types.

(V,M) ≤ ft −→ V ≤ ft (5)

where ft represents (V0,M0)× (V1,M1)→ V2.
Rule 6 and 7 check constraints on object and function types

with common lower bounds.

V ≤ [m : (V ′, )],
V ≤ [m : (V ′′, )]

−→ V ′ ≤ V ′′, V ′′ ≤ V ′ (6)

V ≤ (V0,M0)× (V1,M1)→ V2
V ≤ (V ′0 ,M′0)× (V ′1 ,M′1)→ V ′2

−→
∀i = 0, 1, 2.
Vi ≤ V ′i , V ′i ≤ Vi
∀j = 0, 1.Mj =M′j

(7)

Rule 8 to 11 propagate set membership for M variables.

M =M′ −→M′ =M (8)
M1 ⊆ mSet1,M2 ⊆ mSet2,

M⊆M1 ∪M2
−→M ⊆ mSet1 ∪ mSet2

(9)
Mi ⊆ mSeti,M⊆M1 ∩M2 −→M ⊆ mSeti (10)

M′ ⊆ mSet, M =M′ −→M ⊆ mSet (11)



Rule 12 and 13 apply closure rules to member extension
constraints.

(V,M) ≤ [m : (V ′, ψ)] −→ V ≤ [m : (V ′, ◦)] (12)
M⊆ mSet m 6∈ mSet

(V,M) ≤ [m : (V ′, •)] −→ V ≤ [m : (V ′, •)] (13)

Rule 14 applies closure rules 1–13 to a constraint set to obtain
a possibly larger constraint set.

∀i ∈ 1..k. ci ∈ C c1, .., ck −→ c′1, .., c
′
n

C −→A C ∪ {c′1, .., c′n}
(14)

B. Constraint satisfiability

A solution S to a constraint set C maps each V in C to bt,
t, or top, maps each M in C to set of member names, and

S((V0,M0)× (V1,M1)→ V2) =
(S(V0), S(M))× (S(V1), S(M1))→ S(V2)

S(bt) = bt S(V,M) = (S(V ), S(M))

S([m : (V, ψ)]) = [m : (S(V ), ψ)]

We say that a constraint set C is satisfiable if there exists a
solution S to C such that

U ≤W ∈ C ⇒ S(U) ≤ S(W )

M⊆ mSet ∈ C ⇒ S(M) ⊆ mSet

M =M′ ∈ C ⇒ S(M) = S(M′)
M⊆M′ ∪M′′ ∈ C ⇒ S(M) ⊆ S(M′) ∪ S(M′′)
M⊆M′ ∩M′′ ∈ C ⇒ S(M) ⊆ S(M′) ∩ S(M′′)

VF appears in C ⇒ def(S(VF )) = ∅
C. Constraint consistency

Before we solve a constraint set, we need to make sure it
is consistent. We will show later that a consistent constraint
set is satisfiable.

Definition A constraint set C is consistent if it is not incon-
sistent. C is inconsistent if one of the followings is true:

1) {V ≤ bt, V ≤ [m : (V, ψ)]} ⊆ C
2) {V ≤ bt, V ≤ (V0,M0)× (V1,M1)→ V2} ⊆ C
3) {V ≤ [m : (V, ψ)], V ≤ (V0,M0) × (V1,M1) →

V2} ⊆ C
4) VF ≤ [m : (V, •)] ∈ C.

The first three rules of inconsistency make sure that a type
variable cannot be both integer (or boolean) and an object
type (or a function type) or be both an object type and a
function type at the same time. The last rule says that within
a constructor function, the type of this pointer cannot include
a definite member since a constructor function is always
invoked with an empty object substituting this and empty
object’s type cannot have definite member. This is the only
rule that catches the errors of accessing undefined member.
Intuitively, member access on an object introduces constraint
of the form (V,M) ≤ [m : (V ′, •)]. If the member is not
added before the access, then the closure rules will eventually
generate VF ≤ [m : (V ′, •)], where VF is the initial self type

of the constructor. Otherwise, only constraints of the form
VF ≤ [m : (V ′, ◦)] may be generated.

D. Constraint solution

We define a function UpperC(M) to find the upper bounds
to M variables, where M> is the set of all member names in
the program.

UpperC(M) = {(
⋂
j

mSetj) ∩M> | M ⊆ mSetj ∈ C}

We can show that UpperC(M) satisfies the constraints in C
if C is closed and consistent. Note that it is possible that
some M variables are not constrained if a program does not
terminate and in that case, the upper bound to theM variables
is M>. For example, the call y.m() shown below will cause
an infinite loop. However, the program is still typable.

1 function f(x) {
2 this.m(0);
3 return 0;
4 }
5 Function F() {
6 this.m = f;
7 }
8 y = new F();
9 z = y.m(0);

10 z1 = y.m1;

We can give function f the type tf

tf = (tthis, {m1})× (int, ∅)→ int

so that when y starts with a type (ty, ∅) where ty = [m :
(tf , •)], it ends with the type (ty, {m1}) after the method call.
Then the statement z1 = y.m1 becomes typable. Notice that
the function f never adds a m1 member to self but we can make
any assumption for the function type as long as it doesnot
violate any constraints. This typing is indeed safe because we
can show that if a program terminates, then M variables are
always bounded.

We also use UpperC(V ) to obtain upper bound of a type
variable V in a constraint set C.

UpperC(V ) = {W | (V ≤W ) ∈ C}

Definition For a constraint set C, we define its solution S
(written as Solution(C)) as follows:

1) S(M) = UpperC(M);
2) S(V ) = bt if bt ∈ UpperC(V );
3) S(V ) = top if UpperC(V ) may only have variables;
4) For any other V and V ′, S(V ) = S(V ′) = t iff {V ≤

V ′, V ′ ≤ V } ⊆ C, and
a) if (V0,M0) × (V1,M1) → V2 ∈ UpperC(V ),

then t is defined by t = (S(V0), S(M0)) ×
(S(V1), S(M1))→ S(V2);

b) if [m : ] ∈ UpperC(V ), then t =
[mi : (ui, ψi)

i∈N
], where ∀i ∈ N , ui = S(V ′) for

some V ′ such that [mi : (V ′, )] ∈ UpperC(V ),
and ψi = • if ∃[mi : ( , •)] ∈ UpperC(V ) and
ψi = ◦ otherwise.



To find a solution S that satisfies a constraint set C, we first
find the variables that must have base types and for any other
variable that only has variables in its upper bound set, we set
the variable to the top type. For the rest of variables, we create
equivalence partitions of these variables, where two variables
V ,V ′ are in the same partition iff V ≤ V ′ and V ′ ≤ V are
in C. For each equivalence partition, we create a unique type
name t and assign it to each variable in that partition. The type
names are defined by equations to associate them with function
types or object types based on the type upper bounds of the
corresponding variables in the constraint set. If we assign a
function or object type to a type variable, we add an equation
to define such type.

E. Type inference as constraint closure consistency

We show that type inference is equivalent to checking the
consistency of constraint closure so that a program is typable
if and only if the closure of the constraint set generated from
the program is consistent. For a consistent constraint set C, we
can find a satisfiable solution as in Section IV-D.

Lemma IV.1. If C is closed and consistent, then it is satisfi-
able.

Lemma IV.2. If C is satisfiable, then Closure(C) is consistent.

We can prove Lemma IV.1 by showing that if a constraint
set C is closed and consistent, then Solution(C) is a satisfiable
solution to each kind of constraints in C. To prove Lemma IV.2,
we only need to show that if C is satisfiable, then its closure is
also satisfiable. A satisfiable constraint set is always consistent.
Theorem IV.3 concludes that our type inference algorithm is
sound and complete with respect to our type system.

Theorem IV.3. Given a program P where E `inf P | C, P is
typable iff Closure(C) is consistent.

V. ALLOW STRONG UPDATES TO NEW OBJECTS

Since we assumed that constructor functions always return
new objects, constructors return singleton types. For simplicity,
we do not assign singleton types to objects returned from
regular functions. The meta symbol ς ranges over the singleton
type names, which are distinct from the obj-type names. Each
singleton type ς is defined by an equation of the form

ς = @[mi : (ui, ψi)
i∈1..n

],

where ui cannot be singleton types and ψi may be either ∗,
•, or ◦. We define ∗ ≤ • and ∗ ≤ ∗. An object of singleton
type can have unrestricted extensions and its members with
the label ∗ can receive strong updates. Also, given ς defined
as above, ς(mi) = (ui, ψi) for all i ∈ 1..n and ς(mi) = undef
otherwise. The member m of a singleton type ς can be read
if ς ≤ [m : (u, •)].

ς(m) = (u, ψ) ψ ≤ •
ς ≤ [m : (u, •)]

A singleton type ς can be extended with a set of members M
to form a new singleton type ς ′ define by the relation ς ≤M ς ′.

∀m 6∈M. ς ′(m) = ς(m)

∀m ∈M. ς ′(m) = ς(m) ∨
(ς ′(m) = (u, ∗) ∧ ς(m) = undef) ∨

(ς ′(m) = (u, •) ∧ ς(m) = (u, ◦))
ς ′ ≤M ς

A. Type rules

Before introducing new type rules, we first define an oper-
ator ↓ to downgrade the singleton type ς to ς ′ so that some
of the ∗ members in ς are definite or potential in ς ′ and ς ′

may have some additional potential members. A singleton type
may become more restrictive after downgrading since some of
its members may not be changed and it may be restricted in
member extensions.

ς ′ = @[mi : (ui, ψ
′
i)
i∈1..n

,mj : (uj , ◦)j∈n+1..m
]

ς = @[mi : (ui, ψi)
i∈1..n

]

∀i ∈ 1..n ψi ≤ ψ′i ≤ • ∨ ψi = ψ′i = ◦
ς ↓ ς ′

A singleton type ς is a subtype of an obj-type t if some
definite members of ς appear as potential members in t while
members labeled with ∗ in ς do not appear in t.

t(m) = (u, ψ′)⇒ (ς(m) = (u, ψ) ∧ • ≤ ψ ≤ ψ′)
ς ≤ t

The above relations are used in a situation where an object
referenced by a variable of singleton type is also referenced
by a variable of obj-type. This can happen when a variable of
singleton type ς is passed to a parameter of the type (t,M),
or is assigned to a field of type t. To preserve type safety, we
first downgrade ς to ς ′ so that it is a subtype of t, then extend
ς ′ with members in M to obtain ς ′′, and finally replace all
occurrences of ς in the type environment with ς ′′. These steps
are included in the new rule for the judgment Γ ` y : τ ‖ Γ′

as shown below.
Γ(y) = ς ς ↓ ς ′ ς ′ ≤ t ς ′′ ≤M ς ′

Γ ` y : (t,M) ‖ [ς ′′/ς]Γ

The new rule for judgment Γ; Γ′ ` y : (t,M) ‖ Γ′′ is used
in Rule (T-Invk) to check that y can be passed to the self
pointer with the type (t,M) of a function. Γ is the original
type environment while Γ′ is the environment after checking
the argument to the function parameter. Since y could also
be the argument, Γ′(y) may not be the same as Γ(y). Thus,
we need to make sure that Γ(y) is compatible with t before
checking that Γ′(y) is also compatible.

Γ(y) = ς1 ς1 ↓ ς ′1 ς ′1 ≤ t
Γ′(y) = ς2 ς2 ↓ ς ′2 ς ′2 ≤ t ς ≤M ς ′2

Γ; Γ′ ` y : (t,M) ‖ [ς/ς2]Γ′

The substitution of singleton types in Γ is defined as:

[ς ′/ς]∅ = ∅ [ς ′/ς](y 7→ ς,Γ) = y 7→ ς ′, [ς ′/ς]Γ



[ς ′/ς](y 7→ τ,Γ) = y 7→ τ, [ς ′/ς]Γ

Consider the following example:

1 function F() {
2 this.a = 0;
3 this.m = f;
4 }
5 function f(y) {
6 y.a = 1;
7 y.b = 2;
8 return y;
9 }

10 x = new F();
11 x1 = new F();
12 x2 = x;
13 z = x1.m(x);
14 x2.a = true // type error
15 z1 = z.a;

The type of x at line 10 is ςx and it becomes ς ′′x after line 13.

ςx = @[a : (int, ∗), m : (tf , ∗)]
ς ′x = @[a : (int, •), m : (tf , ∗), b : (int, ◦)]
ς ′′x = @[a : (int, •), m : (tf , ∗), b : (int, •)]
tf = (top, ∅)× (ty, {a, b})→ tz

ty = [a : (int, ◦), b : (int, ◦)], tz = [a : (int, •)]

Before the variable x is passed to the parameter y of the
function f, we downgrade the type ςx to ς ′x so that ςx ≤ ty,
where ty is the type of the parameter y. The subtyping relation
ς ′x ≤ ty guarantees that the ∗ members of ς ′x do not appear in ty
so that strong updates to these members are not visible through
ty. Specifically, the member a of ς ′x is definite so that it cannot
have strong updates. This is necessary since the variable z is
an alias of y while a is a definite member in tz – the type
of z. Lastly, we extend ς ′x with the set {a, b} to obtain ς ′′x to
replace ςx as the type of x and x2.

To see why the type substitution is necessary, consider the
previous example where the variable x2 and x are aliases
of each other and they both have the type ςx. If the type of
x2 remains ςx after the call, then x2.a = true will change
the member z.a to boolean, since x2 and z refer to the same
object. This would be inconsistent with the type of z.

Finally, we are ready to define the type rule for constructors.

Γ[this 7→ ς, xp 7→ (uarg , ∅)] ` s ‖ Γ′

Γ′(this) ↓ ςres ς = @[ ] Γ(F ) = Γ′(xp)→ ςres

Γ ` function F (xp){s}
T-Ctr

What is different is that the type of this pointer in the
constructor function is initially assigned a singleton type that
has no members and the type of this may be replaced by
other singleton type after the function body is evaluated.

We also modify the type rules for updates and new state-
ments, in Figure 6. For x = new F (z), we create a singleton
type that is downgraded from the return type of F for x. For
y.mj = z, if y has a singleton type ς , we extend that type
with the member mj to obtain ς ′ and let y map to ς ′ in the
new type environment. The update is a strong update or an
extension if either mj has the label ∗ or is not defined in ς .

Γ(y) = ς ⇒ ς ′ ≤(m,u) ς Γ′ = [ς ′/ς]Γ
Γ(y) = (t,M) ⇒ Γ(y) ≤ [m : (u, ◦)]

M ′ ⊆M ∪ {m}
Γ′ = Γ[y 7→ (t,M ′]

Γ′ ` z : (u, ∅) ‖ Γ′′

Γ ` y.m = z ‖ Γ′′
T-Upd

Γ(F ) = τarg → ςres Γ ` z : τarg ‖ Γ′ ςres ↓ ς
Γ ` x = new F (z) ‖ Γ′[x 7→ ς]

T-New

Fig. 6. New type rules for statements

The relation ς ′ ≤(m,τ) ς describes the update/extension of
a singleton type ς with member m of type u that results in ς ′.
If m is not defined or it is labeled with ∗ in ς , then the object
can receive strong update.

ς(m) = undef ∨ ς(m) = ( , ∗) ς ′ = ς[m 7→ (u, ∗)]
ς ′ ≤(m,u) ς

ς ′(m) = (u, ψ) • ≤ ψ ς ′ ≤{m} ς
ς ′ ≤(m,u) ς

Consider the previous example, the types of this at line 2 –
ςthis is changed to ς ′this at line 3 with ς ′this ≤(m,tf ) ςthis.

ςthis = @[a : (int, ∗)]
ς ′this = @[a : (int, ∗), m : (tf , ∗)]

In the branch statements, a variable with a different single-
ton type in each branch will have to be assigned a new obj-
type since a singleton type can only be used for one object.
The exception is the type of this pointer of a constructor,
which has singleton type and is immutable. So if this has
different types in the branch statements, we can merge the
two singleton types into one singleton type without violating
type safety. The details of the merge rules for singleton types
are in the appendix.

VI. RELATED WORK

Our work is similar to the type inference system of Ander-
son et al. [1] on a small subset of JavaScript that supports
explicit member extensions on objects and their type system
ensures that the new members may only be accessed after the
extensions. We follow their lead in using method labels to
denote members of an object as being definite or potential. In
addition to explicit member extension, we also allow implicit
extension through function parameter and self pointer. We
distinguish constructor functions from regular functions in that
constructors are used in new expressions that always return
new objects. This distinction allows new objects to have strong
updates and unrestricted extensions.

Also related is the work of Gianantonio et al. [4] on lambda
calculus of objects with self-inflicted extension. Instead of
using labels, they separate potential and definite members of
an object type into two parts: interface part and reservation
part. After an extension, the extended member moves from



reservation part to the interface part. They define a type
construct to recursively encode member extension information
for methods. In comparison, we extend each function type
with a set of members that are added to this in the function
body. They distinguish two kinds of object types: pro-type
and obj-type. A pro-type’s reservation part may be extended
but no subtyping is allowed on pro-types. A pro-type may be
promoted to obj-type which allows covariant subtyping but
obj-types’ reservation parts may not be extended. We allow
newly created objects to have singleton types similar to their
pro-types. The difference is that an object of singleton type
do not lose the ability of having strong updates even after it
is assigned to parameters or fields of obj-type.

Recency types of Heidegger and Thiemann [2] have the
similar goal of preventing the access of undefined members
through type-based analysis. Their approach uses two kinds
of object types: singleton type and summary type, where each
singleton type is associated with an abstract location and
the singleton type has to be promoted to the corresponding
summary type when the next object is allocated at the same
location. Objects of singleton types can receive strong updates
for adding new members or even changing the types of
existing members. Objects of summary types can no longer
be extended. Moreover, they support prototypes and have im-
plemented a constraint-based type inference algorithm. In their
formalism, abstract locations are assigned to new expressions
that return empty objects and if a function will extend its
parameter, the parameter type needs to be singleton type. This
may present some challenges for supporting explicit extension.
For example, the setter function discussed earlier may be a
member of two different constructors. In order to extend this

pointer, setter’s receiver type needs to be a singleton type,
which forces the two constructors to return objects of the same
singleton type. This can be limiting as the two constructors
are forced to have the set of members of the same types. In
comparison to our work, recency type allows singleton types
to be in the object fields and function parameters, though it
is more complex and does not allow extension after an object
loses its recency.

Jensen et al. [6] have implemented a practical analyzer to
detect possible runtime errors of JavaScript program. Their
approach is based on abstract interpretation and uses recency
information. The analyzer can report the absence of errors
based on some inputs but it does not infer types.

Earlier work of Thiemann [7] proposed a type system for
a subset of JavaScript language to detect conversion errors of
JavaScript values. The type system models automatic conver-
sions in JavaScript but it does not model recursive or flow
sensitive types.

DRuby [8] is a tool to infer types for Ruby, which is a class-
based scripting language. DRuby includes a type system with
features such as union, intersection types, object types, self-
type, parametric polymorphism, and tuple types. Their type
inference is also a constraint-based analysis.

As for type inference for object-based languages, Palsberg
developed efficient type inference algorithms [9] with recur-

sive types and subtyping for Abadi Cardelli object calcu-
lus [10], which has method override and subsumption but
not object extension. similar algorithms were developed for
inferring object types for an object calculus with covariant
read-only fields [11] and supporting record concatenation [12].

VII. CONCLUSION

We have presented a constraint-based type inference algo-
rithm for a small subset of JavaScript. The goal is to prevent
accessing an object’s member before it is defined. The type
system supports explicit extension as well as implicit extension
of objects by invoking their methods. We have proved that
the type inference algorithm is sound and complete so that
a program is typable if and only if we can infer its types.
We also included an extension to allow strong updates to new
objects.

Our primary focus is to keep track of member addition/up-
date to objects during and after object initialization, which can
be useful for some programs that exhibit this behavior [13].
However, our system is lack of many important features
found in real world JavaScript programs such as prototypes,
variadic functions, eval function, member deletion, and objects
as associative arrays. For future work, we would like to
have more flexible subtyping rules and to allow parametric
polymorphism.
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APPENDIX

A. A type inference example

In this section, we show some of the type inference steps
for the example in Figure 1. We simplify the example slightly
and reproduce it below.

1 function Form(a) {
2 this.set = setter;
3 }
4 function setter(b) {
5 this.handle = b;
6 return 0;
7 }
8 function handler(c) {
9 return 0;

10 }
11 // main
12 x = new Form(1);
13 y = x.set(handler);
14 z = x.handle(1);

We first show the constraints generated from each function
in Figure 7, where we choose type variable names based on
the names of the corresponding variable. For example, the
type variable for function setter is VSetter. The exception
is VForm, which is the type variable corresponding to the
initial type of this pointer in the constructor function Form.
Type variables for other types are sequential numbered to avoid
collision.

Function Generated constraints

Form
(VForm,M∅) ≤ [set : (Vset, ◦)]
Vsetter ≤ Vset (VForm,MForm) ≤ Vx
MForm ⊆M∅ ∪Mset set ∈Mset

setter

Vsetter ≤ (VsTh,MsTh)× (Vb,M∅)→ VsRet
(VsTh,M∅) ≤ [handle : (Vhandle, ◦)]
Vb ≤ Vhandle handle ∈Mhandle

MsTh ⊆M∅ ∪Mhandle int ≤ VsRet

handler
Vhdler ≤ (VhTh,M∅)× (Vc,M∅)→ VhRet
int ≤ VhRet

main

int ≤ Va

(Vx,M∅) ≤ [set : (Vx.set, •)]
Vx.set ≤ (VxTh,MxTh)× (Vxb,Mxb)→ VxRet
Vx ≤ VxTh Vhdler ≤ Vxb
Mx ⊆M∅ ∪MxTh

(Vx,Mx) ≤ [handle : (Vx.hd, •)]
Vx.hd ≤ (VdTh,MdTh)× (Vdc,Mdc)→ VdRet
(Vx,Mx) ≤ VdTh int ≤ Vdc

Fig. 7. Generated constraints

After applying the closure rules, we collect the types in
the upper bound of each variable, most of which are shown

in Figure 8. We can verify that the closure of the original
constraints set is consistent. In particular, the upper bound
of VForm is {[set : (Vset, ◦)], [set : (Vx.set, ◦)], [handle :
(Vx.hd, ◦)]}, [handle : (Vhandle, ◦] and satisfies the consis-
tency rule that it may not contain object types with definite
members.

Types Type upper bound

Va int

Vset Vx.set, (VxTh,MxTh)× (Vxb,Mxb)→ VxRt

VForm [set : (Vset, ◦)], [set : (Vx.set, ◦)],
[handle : (Vx.hd, ◦)], [handle : (Vhandle, ◦]}

Vsetter (VsTh,MsTh)× (Vb,M∅)→ VsRet, Vset, Vx.set,
(VxTh,MxTh)× (Vxb,Mxb)→ VxRet

VsTh [handle : (Vhandle, ◦)], VxTh
VsRet int, VxRet
Vb Vhandle, Vxb, Vx.hd,

(VdTh,MdTh)× (Vdc,Mdc)→ VdRet

Vhandle Vx.hd, (VdTh,MdTh)× (Vdc,Mdc)→ VdRet

Vhdler (VhTh,M∅)× (Vc,M∅)→ VhRet,
(VdTh,MdTh)× (Vdc,Mdc)→ VdRet,
Vxb, Vb, Vhandle, Vx.hd

Vc Vdc, int
VhTh VdTh

VhRet int, VdRet
Vx [set : (Vx.set, •)], VxTh, VsTh,

[handle : (Vhandle, ◦)], [handle : (Vx.hd, ◦)]
Vx.set (VxTh,MxTh)× (Vxb,Mxb)→ VxRet, Vset
VxTh VsTh, [handle : (Vhandle, ◦)]
Vxb Vb, Vhandle, Vx.hd,

(VdTh,MdTh)× (Vdc,Mdc)→ VdRet

VxRet VsRet, int
Vx.hd (VdTh,MdTh)× (Vdc,Mdc)→ VdRet, Vhandle
VdTh VhTh

Vdc int, Vc
VdRet int, VhRet

Fig. 8. Type upper bounds of each type variable

Closure also generates some constraints for M variables
with clear solutions.

M∅ ⊆ ∅
MsTh =MxTh Mxb =M∅ Mdc =M∅ MdTh =M∅
Mset ⊆ {set} Mhandle ⊆ {handle} Mx ⊆M∅ ∪MxTh

MForm ⊆M∅ ∪Mset MsTh ⊆M∅ ∪Mhandle

From the type upper bounds, we can obtain solutions to each
type. The solutions to most of the variables and functions are
shown in Figure 9, where the variable x has a type before and
after the call to the set method.



Names Corresponding types

Form (int, ∅)→ tx

a int

x tx = [set : (tset, •), handle : (thandle, ◦)]
tset = (tsTh, {handle})× tb → int

setter tsetter = (tsTh, {handle})× (tb, ∅)→ int

tsTh = [handle : (thandle, ◦)]
thandle = (top, ∅)× (int, ∅)→ int

b tb = (top, ∅)× (int, ∅)→ int

handler thandler = (top, ∅)× (int, ∅)→ int

c int

x (tx, {handle})
y int

z int

Fig. 9. Constraint solution

B. Operational semantics

We define a big-step semantics for our language in Fig-
ure 10. First, we give a few definitions used in the semantics.

A heap H is a mapping from object labels ι to object values
o, which maps member names to values. A value v is either
an object label, a function name, a primitive value, or null.

v ::= ι | f | n | b | null
o ::= {mi 7→ vi

i∈1..n}
H ::= {ιi 7→ oi

i∈1..n′}

We can extract the object value from the heap through its
label.

H = {. . . ι 7→ o . . .}
H(ι) = o

Similarly, we can select a member from an object value
through member name if the member is defined in the object.

o = {. . .m 7→ v . . .}
o(m) = v

Otherwise, o(m) = undef, which says m is undefined in o.
Note that undef is not the undefined property in JavaScript.

We use the symbol χ to represent a stack that maps local
variables to to their values and maps a special variable FT to
the the declarations of functions and constructors.

χ ::= {yi 7→ vi
i∈1..n,FT 7→ Fnj∈1..n

′

j }

We can find the value of a name y from the stack if it is in
the domain of the stack.

χ = {. . . y 7→ v . . .}
χ(y) = v

Also, χ(n) = n for any integer n and χ(f) = f for any
function name f . If y is not defined in the domain of χ, then
χ(y) = undef. Moreover, lookup(f, Fni∈1..ni ) = Fnj if Fnj

P = Fni∈1..ni s χ′ = {FT 7→ Fni∈1..ni }
∅, χ′, s; H,χ

∅, ∅, P ; H,χ
R-Prog

x 6∈ dom(χ)

H,χ, var x; H,χ[x 7→ null]
R-Dec

lookup(F, χ(FT)) = function F (xp){s}
χ′ = {this 7→ ι, xp 7→ χ(z),FT 7→ χ(FT)}
ι 6∈ dom(H) H[ι 7→ [ ]], χ′, s; H ′, χ′′

H,χ, x = new F (z) ; H ′, χ[x 7→ ι]
R-New

H(χ(y))(mj) = vj

H,χ, x = y.mj ; H,χ[x 7→ vj ]
R-Sel

H(χ(y))(mj) = f
lookup(f, χ(FT)) =

function f(xp){s; return z′; }
χ′ = {this 7→ χ(y), xp 7→ χ(z),FT 7→ χ(FT)}

H,χ′, s; H ′, χ′′

H,χ, x = y.mj(z) ; H ′, χ[x 7→ χ′′(z′)]
R-Invk

H(χ(y)) = o
H ′ = H(χ(y) 7→ o[mj 7→ χ(z)])

H,χ, y.mj = z ; H ′, χ
R-Upd

H,χ, x = z ; H,χ[x 7→ χ(z)] R-Asn

H,χ, s; H ′, χ′ H ′, χ′, s′ ; H ′′, χ′′

H,χ, s; s′ ; H ′′, χ′′
R-Seq

H,χ, s1 ; H1, χ1 H,χ, s2 ; H2, χ2

(χ(z) = true ∧ i = 1) ∨
(χ(z) = false ∧ i = 2)

trim(χ1, χ2, χ
′
1, χ
′
2)

H,χ, if(z){s1}else{s2}; Hi, χ
′
i

R-If

Fig. 10. Operational semantics where the reduction rules of statements
assume an implicit function table FT that maps each function/constructor
name to its declaration.

is the declaration of the function f and lookup(F, Fni∈1..ni ) =
Fnj if Fnj is the declaration of the constructor F , where
j ∈ 1..n.

The reduction of a statement is written in form of H,χ, s;
H ′, χ′, which means that the execution of a statement s given
the configuration of a heap H and a stack χ results in a new
configuration H ′, χ′.

The reduction rules are mostly straightforward and they do
not consider runtime errors, which will be defined next. A
statement s can write to a variable x not defined in χ and
after the execution of s, χ is extended with the definition of
x. The reduction of if statement uses a predicate trim to remove



variables that are not defined in both branches.
∀i = 1, 2. χ′i = {y 7→ χi(y) | y ∈ dom(χ1) ∩ dom(χ2)}

trim(χ1, χ2, χ
′
1, χ
′
2)

1) Runtime errors: Since big step semantics cannot distin-
guish a program stuck with runtime error from divergence, we
define rules to propagate runtime errors during the computa-
tion. The first type of error is due to accessing an undefined
member of an object or using an undefined function/construc-
tor name. We use a special configuration error to denote the
result of the computation as shown in Figure 11. We will show
that a well-typed program will not result in error. The second
type of error is due to deferencing a null pointer, which is
represented by a special configuration nullPtrEx as shown in
Figure 12. We tolerate this type of error.

H(χ(y))(mj) = undef

H,χ, x = y.mj ; error

H,χ, s; error or (H,χ, s; H ′, χ′ ∧ H ′, χ′, s′ ; error)

H,χ, s; s′ ; error

H(χ(y))(mj) = undef or
H(χ(y))(mj) = f ∧ f 6∈ dom(χ) or
χ(f) = function f(xp){s; return z′; }

χ′ = {this 7→ χ(y), xp 7→ χ(z)} H,χ′, s; error

H,χ, x = y.mj(z) ; error

F 6∈ dom(χ) or
χ(F ) = function F (xp){s} ι 6∈ dom(H) H ′ = H[ι 7→ [ ]]

χ′ = {this 7→ ι, xp 7→ χ(y)} H ′, χ′, s; error

H,χ, x = new F (y) ; error

Fig. 11. Error of accessing undefined members or functions

C. Type soundness

For type soundness proof, we define an invariant that holds
in each reduction step. The invariant is written as Σ,Γ ` H,χ,
which means that the heap H and stack χ are well-formed
under the environment Σ and Γ, where Σ maps object labels
to their types – Σ = {ιi 7→ ti

i∈1..n}.
The judgment Σ,Γ ` v : u asserts that the value v is well-

typed with the type u.

Σ,Γ ` n : int Σ,Γ ` b : bool Σ,Γ ` null : t

Σ(ι) ≤ t
Σ,Γ ` ι : t

Γ(f) ≤ t
Σ,Γ ` f : t

Σ,Γ ` v : u u ≤ τ
Σ,Γ ` v : τ

int ≤ (int, ) bool ≤ (bool, ) tf ≤ (tf , )

where tf represents function types.

∀m. t′(m) = (u, ψ′)⇒ t(m) = (u, ψ) ∧
(ψ′ = • ∨ m ∈M)⇒ ψ = •

t ≤ (t′,M)

χ(y) = null

H,χ, x = y.mj ; nullPtrEx

χ(y) = null

H,χ, y.mj = z ; nullPtrEx

H,χ, s; nullPtrEx or
H,χ, s; H ′, χ′ H ′, χ′, s′ ; nullPtrEx

H,χ, s; s′ ; nullPtrEx

χ(y) = null or
H(χ(y))(mj) = f χ(f) = function f(xp){s; return z′; }
χ′ = {this 7→ χ(y), xp 7→ χ(z)} H,χ′, s; nullPtrEx

H,χ, x = y.mj(z) ; nullPtrEx

ι 6∈ dom(H) H ′ = H[ι 7→ [ ]] χ(F ) = function F (xp){s}
χ′ = {this 7→ ι, xp 7→ χ(y)} H ′, χ′, s; nullPtrEx

H,χ, x = new F (y) ; nullPtrEx

Fig. 12. Null pointer exception

For an object to be well-typed, each of the object’s member
value must be well-typed and it must be a definite member in
the object’s type. The judgment Σ,Γ ` o : t asserts that the
object o is well-typed with the type t.

∀m. t(m) = (u, •)⇒ Σ,Γ ` o(m) : u

Σ,Γ ` o : t

We define a well-formed type τ (written as ` τ ) as below.

∀m ∈M. u ≤ [m : ( , ◦)]
` (u,M)

Using the above definitions, we define the program invariant
as:

∀ι. ι ∈ dom(Σ)⇔ ι ∈ dom(H)
∀y. y ∈ dom(Γ)⇔ y ∈ dom(χ)

∀ι ∈ dom(H). Σ,Γ ` H(ι) : Σ(ι) ∀Fn ∈ χ(FT). Γinit ` Fn
∀y ∈ dom(χ). Σ,Γ ` χ(y) : Γ(y) ` Γ(y)

Σ,Γ ` H,χ
The judgment Σ,Γ ` H,χ says that the heap H and stack
χ are well-formed with respect to the environment Σ and Γ.
For this invariant to hold, the domains of H and Σ must be
the same and the domains of χ and Γ have the same set of
variables; also, each object in H and each variable in χ must
be well-typed. Each function/constructor declaration in χ is
well-typed with the environment Γinit, which is defined as
the environment that maps function/constructor names to their
types.

From the typing rules, we can show that if a well-typed
function f has the type (t,Mthis) × (u,Marg) → ures ,
then Mthis and Marg correctly identify the members of the
receiver and the argument that are added (or updated). Based



on this result, we can show that the execution of a well-typed
statement cannot lead to errors caused by accessing undefined
object members or functions. Also, the execution of a well-
typed statement will result in a well-formed heap and stack.

Lemma A.1. If Σ,Γ ` H,χ and Γ ` s ‖ Γ′, then H,χ, s 6;
error, and if H,χ, s ; H ′, χ′, then ∃ Σ′ such that Σ′,Γ′ `
H ′, χ′.

From Lemma A.1, we can conclude that well-typed pro-
grams will not lead to errors caused by accessing undefined
members.

Theorem A.2 (Type Soundness). If Γ ` P ‖ Γ′, then
∅, ∅, P 6; error and if ∅, ∅, P ; H,χ, then ∃ Σ such that
Σ,Γ′ ` H,χ.

D. Type inference

The type inference rules shown in Figure 13 mirror the type
rules. The inference rules uses the judgment of the form E `inf
z : (V,M) ‖ E′ | C to infer a constraint set C when passing
the variable z to a parameter of the type (V,M).

z = n | b | f
E `inf z : (V,M) ‖ E | {E(z) ≤ V }

E(y) = (Vy,My) M′ fresh
C = {E(y) ≤ V,M′ ⊆My ∪M}

E `inf y : (V,M) ‖ E[y 7→ (Vy,M′)] | C

E′(y) = (Vy,My) M′ fresh
C = {E(y) ≤ V,M′ ⊆My ∪M}

E;E′ `inf y : (V,M) ‖ E′[y 7→ (Vy,M′)] | C

The predicate merge(E1, E2, E, C) merges the environ-
ments E1 and E2 to E and results in a constraint set C.

merge(E,E,E, ∅)
merge(E1, E2, E, C)
merge(E2, E1, E, C)

y 6∈ dom(E2) merge(E1, E2, E, C)
merge((y 7→ , E1), E2, E, C)
M fresh merge(E1, E2, E

′, C′)
C = C′ ∪ {M ⊆M1 ∩M2} E = y 7→ (V,M), E′

merge((y 7→ (V,M1), E1), (y 7→ (V,M2), E2), E, C)
V fresh V1 6= V2 merge(E1, E2, E

′, C′)
C = C′ ∪ {(V1,M1) ≤ V, (V2,M2) ≤ V }

E = y 7→ (V, ∅), E′

merge((y 7→ (V1,M1), E1), (y 7→ (V2,M2), E2), E, C)

E. Allow strong update to new objects

For the if statement, we need to define some additional
rules to merge type environments of each branch. A variable
mapped to the same singleton type still has that type in the
merged environment. If a variable y has different singleton
types or a singleton type in one branch and an obj-type in
the other branch, then we let y has an obj-type in the merged

E `inf Fni | Ci ∀i ∈ 1..n E `inf s ‖ E′ | C0
C = {M∅ ⊆ ∅, Vint ≤ int, Vbool ≤ bool}
E `inf Fni∈1..ni s |

⋃
i∈0..n Ci ∪ C

Vthis, Varg , Vres fresh
E[x 7→ (Varg ,M∅), this 7→ (Vthis,M∅)] `inf s ‖ E′ | C′

C′′ = C′ ∪ {E′(z) ≤ Vres}
C = C′′ ∪ {E(f) ≤ (E′(this)× E′(x)→ Vres}

E `inf function f(x){s; return z} | C
E[x 7→ (Varg ,M∅), this 7→ (VF ,M∅)] `inf s ‖ E′ | C′
E′(x) = (Varg ,Marg) E(F ) = (Varg ,M)→ Vres

C = C′ ∪ {E′(this) ≤ Vres ,M =Marg}
E `inf function F (x){s} | C

V fresh E′ = E[x 7→ (V,M∅)]
E `inf var x ‖ E′ | ∅

E `inf x = z ‖ E[x 7→ E(z)] | ∅

Vy.m,M′y,M fresh E(y) = (Vy,My)
C = {E(y) ≤ [m : (Vy.m, ◦)], E(z) ≤ Vy.m,

M′y ⊆My ∪M,M⊆ {m}}
E′ = E[y 7→ (Vy,M′y)]

E `inf y.m = z ‖ E′′ | C
Vy.m fresh C = {E(y) ≤ [m : (Vy.m, •)]}

E′ = E[x 7→ (Vy.m,M∅)]
E `inf x = y.m ‖ E′ | C

Vy.m, Vthis, Varg , Vres ,Mthis,Marg fresh
E ` z : (Varg ,Marg) ‖ E′ | C′

E;E′ ` y : (Vthis,Mthis) ‖ E′′ | C′′
C = {E(y) ≤ [m : (Vy.m, •)],

Vy.m ≤ (Vthis,Mthis)× (Varg ,Marg)→ Vres}
E `inf x = y.m(z) ‖ E′′[x 7→ (Vres ,M∅)] | C ∪ C′ ∪ C′′

E(F ) = (Varg ,Marg)→ Vres
E `inf z : (Varg ,Marg) ‖ E′ | C

E′′ = E[x 7→ (Vres ,M∅)]
E `inf x = new F (z) ‖ E′ | C

E `inf s ‖ E′ | C E′ `inf s′ ‖ E′′ | C′

E `inf s; s′ ‖ E′′ | C ∪ C′

E `inf s1 ‖ E1 | C1 E `inf s2 ‖ E2 | C2
E(z) ≤ bool merge(E1, E2, E

′, C)
E `inf if(z){s1}else{s2} ‖ E′ | C1 ∪ C2 ∪ C

Fig. 13. Inference rules to generate constraints from a program

environment. The singleton types have to be downgraded to
be the subtypes of the final type of y.

∀i = 1, 2. ςi ↓ ς ′i ς ′i ≤ t Γ′i = [ς ′1/ς1, ς
′
2/ς2]Γi

ς1 6= ς2 merge(Γ′1,Γ
′
2,Γ)

merge((y 7→ ς1,Γ1), (y 7→ ς2,Γ2), (y 7→ (t, ∅),Γ))



ς ↓ ς ′ ς ′ ≤ t′ (t,M) ≤ t′
∀i = 1, 2. Γ′i = [ς ′/ς]Γi merge(Γ′1,Γ

′
2,Γ)

merge((y 7→ ς,Γ1), (y 7→ (t,M),Γ2), (y 7→ (t′, ∅),Γ))

We treat this variable of constructors differently since it
is immutable and always has singleton type. If this has two
different singleton types in the branches of an if statement,
then we require these two types to be downgraded to the same
singleton type.

ς1, ς2 ↓ ς ∀i = 1, 2. Γ′i = [ς/ς1, ς/ς2]Γi merge(Γ′1,Γ
′
2,Γ)

merge((this 7→ ς1,Γ1), (this 7→ ς2,Γ2), (this 7→ ς,Γ))

where ς1, ς2 ↓ ς downgrades ς1 and ς2 to a singleton type ς .

∀m. ς(m) = ( , ∗)⇔ ς1(m) = ( , ∗), ς2(m) = ( , ∗)
∀i = 1, 2.

ς(m) = (u, ), ςi(m) = (ui, ) ⇒ u = ui
ςi(m) = ( , ψi), • ≤ ψi ⇒ ς(m) = ( , ψ), • ≤ ψ

ς(m) = ( , •) ⇒ ςi(m) = ( , ψi), ψi ≤ •
ς1, ς2 ↓ ς

1) Type soundness: To prove type soundness, we modify
the program invariant slightly. The main change is that if two
singleton-type variables hold the same object, then they must
have the same type.

∀y, y′ ∈ dom(χ). χ(y) = χ(y′) ∧ Γ(y) = ς ∧ Γ(y′) = ς ′

⇒ ς = ς ′

∀ι. ι ∈ dom(Σ)⇔ ι ∈ dom(H)
∀y. y ∈ dom(Γ)⇔ y ∈ dom(χ)
∀ι ∈ dom(H). Σ,Γ ` H(ι) : Σ(ι)
∀Fn ∈ χ(FT). Γinit ` Fn

∀y ∈ dom(χ). Σ,Γ ` χ(y) : Γ(y) ` Γ(y)

Σ,Γ ` H,χ

Also, the environment Σ now maps each object label ι to a
singleton type ς . Correspondingly, we define

∀m. ς ≤ [m : (u, •)]⇒ Σ,Γ ` o(m) : u

Σ,Γ ` o : ς

The judgment Σ,Γ ` o : ς says that each definite or ∗ member
of ς is defined in o, and ς may have some potential members
not yet defined in o. In addition, we define a type rule to allow
object labels to have singleton types and obj-types.

Σ(ι) ≤ ς
Σ,Γ ` ι : ς

Σ(ι) ≤ t
Σ,Γ ` ι : t

A singleton type ς is a subtype of ς ′ if they have the same
set of ∗ members but some of the definite members in ς are
marked as potential in ς ′.

ς(m) = (τ, ψ)⇔
ς ′(m) = (τ, ψ′) ∧ (ψ = ψ′ ∨ • ≤ ψ ≤ ψ′

ς ≤ ς ′

E[xp 7→ (Varg ,M∅), this 7→ VF ] `inf s ‖ E′ | C
E(F ) = (Varg ,M)→ Vres E′(xp) = (Varg ,Marg)

C′ = {E′(this) ↓ Vres ,M =Marg ,VF = @[ ]}
E `inf function F (x){s} | C ∪ C′

V ′y,M′y,M, V fresh

E(y) = Vy ⇒ C′ = {V ′y ≤(m,V ) Vy}
E′ = [V ′y/Vy]E

E(y) = (Vy,My) ⇒ E′ = E[y 7→ (Vy,M′y)]
C′ = {Vy ≤ [m : (V, ◦)],
M⊆ {m},M′y ⊆My ∪M}

E′ `inf z : (V,M∅) ‖ E′′ | C
E `inf y.m = z ‖ E′′ | C ∪ C′

V fresh E(F ) = (Varg ,Marg)→ Vres
E `inf z : (Varg ,Marg) ‖ E′ | C

E `inf x = new F (z) ‖ E′[x 7→ V] | C ∪ {Vres ↓ V}

Fig. 14. New type inference rules

2) Type inference: We need to modify the type inference
rules for constructor function, new statement, and update in
a way similar to the type rules as in Figure 14. We use the
variable V to represent singleton types while V still represents
obj-types.

We add some inference rules for judgments of the form
E `inf y : (V,M) ‖ E′ | C and E,E′ `inf y :
(V,M) ‖ E′′ | C.

E(y) = V V ′ fresh E′ = [V ′′/V]E

C = {V ↓ V ′,V ′ ≤ V,V ′′ ≤M V ′}
E `inf y : (V,M) ‖ E′ | C

E(y) = V1 V ′1 fresh C = {V1 ↓ V ′1,V ′1 ≤ V }
E′(y) = V2 V ′2 fresh E′′ = [V ′′2 /V2]E′

C′ = {V2 ↓ V ′2,V ′2 ≤ V,V ′′2 ≤M V ′2}
E;E′ `inf y : (V,M) ‖ E′′ | C ∪ C′

We also add some definitions for the merge predicate.

V ′1,V ′2, V fresh V1 6= V2 merge(E′1, E
′
2, E, C′)

E′1 = [V ′1/V1,V ′2/V2]E1 E′2 = [V ′1/V1,V ′2/V2]E2

C = C′ ∪ {V1 ↓ V ′1,V2 ↓ V ′2,V ′1 ≤ V,V ′2 ≤ V }
merge((y 7→ V1, E1), (y 7→ V2, E2), (y 7→ (V,M∅), E), C)

V ′, V ′ fresh C = C′ ∪ {V ↓ V ′,V ′ ≤ V ′, (V,M) ≤ V ′}
E′1 = [V ′/V]E1 E′2 = [V ′/V]E2 merge(E′1, E

′
2, E, C′)

merge((y 7→ V, E1), (y 7→ (V,M), E2), (y 7→ (V ′,M∅), E), C)

V fresh E′1 = [V/V1,V/V2]E1 E′2 = [V/V1,V/V2]E2

C = C′ ∪ {V1,V2 ↓ V} merge(E′1, E
′
2, E, C′)

merge((this 7→ V1, E1), (this 7→ V2, E2), (this 7→ V, E), C)



The inference rules generates some new types of constraints:

V ↓ V ′ V1,V2 ↓ V ′ V ≤ V VF = @[ ]

V ≤(m,V ) V ′ V ≤M V ′ V ≤ [m : (V, ψ)].

For the definition of constraint satisfiability, we define a few
rules in addition to those in Section IV-B. If S is a satisfiable
solution to the constraint set C, then

V ≤(m,V ) V ∈ C ⇒ S(V) ≤(m,S(V )) S(V ′)
V ≤ V ∈ C ⇒ S(V) ≤ S(V )

V ≤M V ′ ∈ C ⇒ S(V) ≤S(M) S(V ′)
V ↓ V ′ ∈ C ⇒ S(V) ↓ S(V ′)

V1,V2 ↓ V ′ ∈ C ⇒ S(V1), S(V2) ↓ S(V ′)
V ≤ [m : (V, ψ)] ∈ C ⇒ S(V) ≤ [m : (S(V ), ψ)]

VF = @[ ] ∈ C ⇒ S(VF ) = @[ ]

where ς ≤ [m : (u, ◦)] and ς ≤ [m : (u, ∗)] are defined as
below.

ς(m) = (u, ψ) • ≤ ψ
ς ≤ [m : (u, ◦)]

ς(m) = (u, ψ) ψ ≤ •
ς ≤ [m : (u, ∗)]

We add some closure rules for the new forms of constraints.
Rule 16 to 18 propagates constraints related to extensions

or updates to objects of singleton types.

V ≤ [m : (V, ψ)],
V ′ ≤ [m : (V ′, ψ′)]

−→ V ≤ V ′, V ′ ≤ V (15)

V ≤(m,V ) V ′ −→ V ≤ [m : (V, ∗)] (16)

V ≤(m,V ) V ′,
V ′ ≤ [m′ : (V ′, ψ)]
m′ 6= m ∨ ψ = ◦

−→ V ≤ [m′ : (V ′, ψ)] (17)

V ≤(m,V ) V ′,
V ≤ [m′ : (V ′, •)],

m′ 6= m
−→ V ′ ≤ [m′ : (V ′, •)] (18)

Rule 19 to 21 are for the interfacing between singleton types
and obj-types.

V ≤ V, V ≤ [m : (V ′, ψ)] −→ V ≤ [m : (V ′, ψ)],
V ≤ [m : (V ′, ◦)] (19)

V ↓ V ′,V ≤ [m : (V, ψ)] −→ V ′ ≤ [m : (V, ψ)] (20)

V ↓ V ′,V ′ ≤ [m : (V, •)] −→ V ≤ [m : (V, •)] (21)

Rule 22 to 24 are for merging two singleton types into
another singleton type.

V1,V2 ↓ V,
V1 ≤ [m : (V1, ∗)],
V2 ≤ [m : (V2, ∗)]

−→ V ≤ [m : (V1, ∗)],
V ≤ [m : (V2, ∗)]

(22)

V1,V2 ↓ V,
i ∈ {1, 2}. Vi ≤ [m : (V, ◦)] −→ V ≤ [m : (V, ◦)] (23)

V1,V2 ↓ V,
V ≤ [m : (V, •)] −→

V1 ≤ [m : (V, •)],
V2 ≤ [m : (V, •)]

(24)

The closure rules 25 and 26 are for the constraints of the
form V ≤M V ′, which are similar to those for (V,M) ≤ V ′.

V ≤M V ′,
V ′ ≤ [m : (V, ψ)]

−→ V ≤ [m : (V, ψ)] (25)

V ≤M V ′,
V ≤ [m : (V, •)],

M⊆ mSet,m 6∈ mSet

−→ V ′ ≤ [m : (V, •)] (26)

The definition of consistency is similar to what we had
before. In additional to the existing rules in Section IV-C, a
constraint set C is inconsistent if

1) V ≤ bt ∈ C
2) V ≤ (V0,M0)× (V1,M1)→ V2 ∈ C
3) V ≤ [m : ( , ∗)] ∈ C
4) {V ≤ [m : (V, )],V = @[ ]} ∈ C.

where the last rule replaces VF ≤ [m : (V, •)] ∈ C in the
previous consistency rules. A singleton type cannot be a base
type or a function type, and an obj-type cannot have a member
labeled with ∗ either. The initial type of the self pointer of a
constructor function may not have any members.

We define the solution S for a constraint set C for its V vari-
ables so that S(V) = @[mi : (ui, ψi)

i∈1..n] where ∀i ∈ 1..n,
ui = S(V ) for some V such that [mi : (V, )] ∈ UpperC(V)
and

1) ψi = • if X = {•, ◦}, {∗, ◦}, or {∗, •, ◦},
2) ψi = ◦ if X = {◦}, and
3) ψi = ∗ if X = {•}, {∗}, or {∗, •}.

where X = {ψ | [mi : ( , ψ)] ∈ UpperC(V)}.
The label ψi of S(V) is ∗ when ∗ ∈ X . We also let ψi be

∗ if X = {∗, •} since accessing the member mi of V adds
a constraint of the form V ≤ [mi : (V, •)]. We let ψi be •
if X = {∗, •, ◦} or {∗, ◦}. The reason is that we keep track
of whether a member of a singleton type V also exists in the
type V where V ≤ V by propagating constraints of the form
V ≤ [mi : (V ′, ◦)] through Rule 19. When both constraints
of the form V ≤ [mi : (V ′, ∗)] and V ≤ [mi : (V ′, ◦)] are
present, it indicates that mi has to be a definite member in
S(V).


