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Abstract

This study introduces a novel U-shaped image-segmentation algorithm, CS-UNet, which contains parallel
CNN and Transformer encoders. This algorithm leverages the relative strength of CNN and Transformers,
and enables flexible combination of encoders pre-trained on different datasets to extract the maximum
benefit of transfer-learning. CS-UNet is evaluated for its segmentation accuracy on microscopy images of
materials science. The performance of CS-UNet is comparable or better than state-of-the-art algorithms
based on CNN or Transformer encoders. As expected, the performance of CS-UNet is better when its
encoders are pre-trained on microscopy images than when its encoders are pre-trained on natural images.
However, the strength of in-domain pre-training is more significant in use cases such as out-of-distribution
learning and one-shot learning. In particular, the Intersection over Union (IoU) accuracy of nickel-based
super-alloy images is improved from 77.89% to 82.13% for out-of-distribution learning and IoU accuracy
of environmental-barrier-coating images is improved from 65.9% to 70.45% for one-shot learning.
CS-UNet also has surprisingly good performance on medical images. For Synapse multi-organ dataset,
CS-UNet pre-trained on materials microscopy images has an average accuracy of 84.2% in Dice Simi-
larity Coefficient (DSC), and 8.89 mm in 95% Hausdorff Distance (HD). In comparison, state-of-the-art
segmentation algorithms pre-trained on ImageNet have an average DSC ranging from 76.5% to 80.39%
and average HD ranging from 14.7 to 39.7 mm. Even when pre-trained on ImageNet, CS-UNet still has
DSC of 83.27% and HD of 15.26 mm. This suggests that Transformer and CNN complement each other
and pre-training on images with similar attributes is beneficial to the downstream tasks.
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1 Introduction

Deep Learning (DL) has been widely applied to complex systems because of its ability to extract important
information automatically. Researchers have applied DL algorithms to image analysis to identify structures
and to determine the relationship between microstructure and performance [1]. DL has been demonstrated
to complement physics-based methods for materials design. However, DL requires large amount of training
data while the limited number of microscopy images tends to reduce its effectiveness. Learning techniques,
such as transfer-learning, multi-fidelity modeling, and active learning, were developed to make DL applicable
to smaller datasets [1, 2]. Transfer-learning uses the parameters of a model pre-trained on a larger dataset
to initialize a model trained on a smaller dataset for a downstream task. For example, a Convolutional
Neural Network (CNN) pre-trained on natural images can be used to initialize a neural network for image
segmentation such as UNet to improve its precision and reduce the training time.

In recent years, attention-based neural networks called Transformers are widely adopted in computer
vision. While CNN extracts features from local regions of images using convolution filters to capture the
spatial relation between the pixels, Transformer divides an image into patches and feeds them into a
Transformer-based encoder to capture the long-range relation between pixels across the images [3, 4]. Thus,
it is possible that a combination of CNN and Transformer may be more effective in transfer-learning than
either of the models alone.

Fig. 1 The high-level architecture of CS-UNet, where the weights of the CNN and Swin-T encoders (below the line) can be
initialized from CNN and Swin-T blocks (above the line) pre-trained on natural and/or microscopy images through classification
tasks.

In this paper, we present a novel segmentation algorithm called CS-UNet that includes a parallel compo-
sition of CNN and Transformer encoders. The high-level architecture of CS-UNet is illustrated in Figure 1,
which shows a U-shaped encoder-decoder architecture. The parameters of the encoders are initialized from
models pre-trained on natural or microscopy images. Each encoder transforms the input image into a latent
representation vector to extract semantic information. Each decoder maps the extracted information back
to each pixel in the input image to generate a pixel-wise classification of the image [1, 5]. The output of the
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CNN and Transformer encoders are fused before connecting to the decoder. CS-UNet allows great flexibil-
ity in combining different types of CNN and Transformer encoders pre-trained on different types of data to
allow optimal choices of encoders for the segmentation tasks.

Encoder-decoder architecture allows pre-training to improve segmentation accuracy. It was speculated
that pre-training with microscopy images is better for microscopy image segmentation since natural images
has high-level features that do not exist in microscopy images. Recent work by Stuckner et al. [6] con-
firmed the benefit of pre-training CNN encoders on a microscopy dataset called MicroNet with over 100,000
images. They evaluated the CNN encoders with the segmentation of nickel-based super alloy (Super) and
environmental barrier coating (EBC) images. Their tests showed higher accuracy measured in Intersection
over Union (IoU) for one-shot and few-shot learning and for out-of-distribution images that have different
compositions, etching, and imaging conditions than the training images.

To evaluate the performance of CS-UNet, we pre-trained CNN and Transformer encoders on different
types of datasets and performed segmentation on the same test sets used by Stuckner et al. [6]. We chose the
tiny version of Swin-Transformer – Swin-T [7] as our Transformer encoder. While we can initialize the CNN
encoders using the CNN models of Stuckner et al. [6], we are unable to obtain their dataset MicroNet to train
our Swin-T encoder. To this end, we created a similar pre-training dataset with about 50,000 microscopy
images in 74 classes, which we will refer to as MicroLite.

Our experiments showed that CS-UNet has similar or better accuracy than the state-of-the-art algorithms
based on CNN or Transformer encoders including the ones included in Stuckner et al. [6]. We also compared
the performance of CS-UNet using encoders pre-trained on microscopy images with the encoders pre-trained
on natural images. The results showed improvement in segmentation accuracy for one-shot learning and
out-of-distribution learning, which is largely in agreement with the result of Stuckner et al.. Due to visual
similarity between microscopy and the computed tomography (CT) images, we speculate that CS-UNet pre-
trained on microscopy image can improve segmentation accuracy of CT images. To this end, we compared the
performance of CS-UNet with 6 state-of-the-art algorithms on the Synapse multi-organ segmentation dataset.
Our results showed that CS-UNet pre-trained on microscopy images outperforms the previous algorithms
in both Dice Similarity Coefficient (DSC) and 95% Hausdorff Distance (HD) by significant margins. This
offers further evidence that the parallel combination of CNN and Transformer encoders is a good choice for
U-shaped segmentation networks and pre-training on visually similar images help improving downstream
tasks.

In the rest of the paper, we first survey Transformer-based algorithms on image analysis and segmentation
in Section 2. We then describe the CS-UNet architecture, the pre-training dataset MicroLite, and the pre-
training process of the Transformer encoders of CS-UNet in Section 3. We discuss the evaluation result of
CS-UNet on test datasets of microscopy images in Section 4 and of medical images in Section 5.

2 Related Work

In this section, we review the recent Transformer networks for image analysis and the Transformer-based
segmentation algorithms. We focus on the algorithms that are most relevant to this study.

2.1 Transformers for Image Analysis

CNN uses the convolution operators to provide translational equivariance but its local receptive field has
limitation in capturing long-range relation between pixels [4]. In recent years, Transformer has been used in
place of CNN for computer vision (CV) tasks to overcome this limitation. Transformer is a type of deep neural
network introduced by Vaswani et al. [8], which was successfully applied in Natural Language Processing

3



(NLP) due to their ability to capture long-range dependencies in sequential data such as text. This approach
led to significant improvements in NLP applications, such as language translation, text classification, and
text generation. Compared to NLP tasks, using Transformer-based models on CV tasks is more challenging
since images have size variations, noises, and redundant modalities. Self-attention process is the fundamental
building block of Transformer aiming to learn self-alignment that provides the ability to capture the long-
range relation between image patches [4]. This has led to much interest in the Transformer-based approach
in CV domains [3] such as image recognition, image segmentation [9], object detection [10, 11], image super-
resolution, and image generation [12]. Dosovitskiy et al. [3] proposed a Vision Transformer (ViT) based
on a vanilla Transformer network for NLP [8] with as few modifications as possible to capture the global
context of an input image. ViT splits each image into patches and provides the Transformer with the
linear embedding of each patch in order. Image patches are handled in the same manner as tokens in an
NLP application. Supervised learning is used to train the model for image classification. The model is fine-
tuned using downstream recognition benchmarks such as ImageNet classification after pre-training on a JFT
dataset with 300 million images [13]. ViT has better performance than traditional CNN and achieved 88.5%
on ImageNet classification task. However, ViT required more computational resources to train. In addition,
the complexity of computing SoftMax for each self-attention block is quadratic with respect to the length
of input sequence, limiting its applicability to high-resolution images [3, 4].

To improve a Transformer model to capture local information, Liu et al. [7] proposed a new vision
Transformer called Shifted Window Transformer (Swin Transformer). This method proposed a new general-
purpose backbone for image classification and recognition tasks and achieved state-of-the-art performance.
The model used a shifted-window scheme to capture large variations in the scale of visual entities and high
resolutions pixels in an image with linear computation complexity to input image size. In contrast, ViT [3]
model produces feature maps of a single low resolution and have quadratic computation complexity to input
image size because self-attention is applied globally to all the patches. Swin Transformer achieves a good
performance of 87.3% on the ImageNet classification task, 58.7% box average precision score on COCO
detection task, and 53.5% mIoU on the ADE20K dataset for segmentation task. Swin Transformer V2 [14]
can scale up to 3 billion parameters and train with images as high quality as 1536 × 1536 pixels. Swin
Transformer V2 modified the Swin attention module for better window resolution and scale model capacity.
This is done by replacing the pre-norm with post-norm configuration, using scaled cosine attention instead
of dot product attention, and replacing the previous parameterized approach with a log-spaced continuous
relative position bias approach.

The concept of unboxing the decision-making strategy in image segmentation aims to move beyond just
achieving results but to understand how those results are obtained. This transparency is vital in medi-
cal applications where trust and interpretability are paramount. Deep Nearest Centroid (DNC) [15] is an
approach that utilizes the Sinkhorn-Knopp algorithm [16] to expedite the clustering of features into sub-
centroids corresponding to different categories. This approach replaced the traditional softmax classification
layer, leading to improved optimization of network parameters and enhancements in tasks such as image
classification and semantic segmentation. DNC draws inspiration from intuitive case-based reasoning. It
summarizes each class into sub-centroids by clustering training data. Classifications are made based on the
proximity of test data to these sub-centroids, allowing for the generation of IF-THEN rules and visualiza-
tion of representative images, making the decision process clear and understandable. ClusterFormer [17] and
CLUSTSEG [18] leveraged clustering in the Transformer architecture. ClusterFormer utilizes recurrent cross-
attention clustering and feature dispatching to handle various tasks with varying granularity. CLUSTSEG
employs task-aware initialization and recursive clustering to tackle diverse segmentation tasks like super-
pixel, semantic, instance, and panoptic segmentation, all within a single framework. Both models achieve
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state-of-the-art results while offering transparency through their clustering-based approaches. CS-UNet may
be adapted to incorporate these clustering-based methods such as DNC [15] to introduce interpretability to
the model and to improve performance.

2.2 Image Segmentation Algorithms

In recent years, many variations of U-shaped networks have been used in image segmentation. U-Net is
a Fully Convolutional Network (FCN) proposed by Ronneberger et al. [19, 20], which is a symmetric, U-
shaped, encoder-decoder neural network for semantic image segmentation. U-Net typically consists of a
down-sampling encoder and an up-sampling decoder structure and a “skip connection” between them. These
connections copy feature maps from the encoder and concatenate them with the feature maps in the decoder.

Transformer encoder was used in SegFormer [21], which is a semantic segmentation framework that
combines Transformer encoders with lightweight MultiLayer Perceptron (MLP) decoders. SegFormer is also
based on encoder-decoder architecture, where the encoder is a hierarchically structured Transformer that
outputs multi-scale features without the need for positional encoding and the lightweight All-MLP decoder
aggregates the information from different layers and combines local and global attention to produce the final
semantic segmentation mask. SegFormer uses a patch size of 4 × 4 pixels to output a segmentation map.
This approach helps improve dense prediction tasks and has resulted in impressive mIoU scores of 50.3% on
the ADE20K dataset and 84% on the Cityscapes dataset.

CNN and Transformer were combined in TransUNet [22], which is a U-shaped architecture that employs a
hybrid CNN-Transformer encoder followed by multiple up-sampling layers in the CNN decoder. This method
leverages both detailed high-resolution spatial information from CNN features and the global context encoded
by Transformers. The TransUNet architecture includes 12 ViT [3] layers in the encoder, which encodes
tokenized image patches obtained from the CNN layers. These encoded features are then up-sampled in the
decoder to generate the final segmentation map, with skip-connections incorporated. TransUNet achieved
high performance compared with the CNN-based models.

Swin-Unet [23] uses only Transformer encoders in its U-shaped encoder-decoder architecture for medi-
cal image segmentation. Swin-Unet includes skip-connections for local-global semantic-feature learning by
feeding the tokenized image patches into the model. Both the encoder and decoder structures of Swin-Unet
were inspired by the hierarchical Swin-Transformer [7] with shifted windows.

UNEt TRansformer (UNETR) model [24] is a U-shaped encoder-decoder architecture for 3D medical
image segmentation, which uses ViT [3] as encoders to capture global multi-scale information. The Trans-
former encoder is connected with the CNN decoder using skip connections to compute the final semantic
segmentation output. UNETR has excellent accuracy and efficiency in various medical datasets for image
segmentation tasks. Swin UNETR [25] is a similar model for segmenting brain tumors in multi-modal MRI
images, which uses Swin Transformer [7] as encoders and connects to CNN decoders via skip connections at
different resolutions. This model had one of the top performance in BraTS 2021 segmentation challenge for
multi-modal 3D brain tumor segmentation.

HiFormer [26] bridges CNN and Transformer encoders for medical image segmentation, where it uses
two multi-scale feature representations and a Double-Level Fusion (DLF) module to fuse global and local
features. Experiments showed that HiFormer outperforms other CNN-based, Transformer-based, and hybrid
methods in computational complexity and accuracy. HiFormer provides an end-to-end training strategy that
integrates global contextual representations from Swin Transformer and local representative features from
the CNN module in the encoder, followed by a decoder that outputs the final segmentation map.

TransDeepLab [27] is a DeepLabV3+ architecture based on pure Transformer for medical image seg-
mentation. It uses a hierarchical Swin-Transformer with shifted windows to model the Atrous Spatial
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Pyramid Pooling (ASPP) module. The encoder module splits the input image into patches and applies
Swin-Transformer blocks to encode local semantic and long-range contextual representation. A pyramid of
Swin-Transformer blocks with varying window sizes is designed for ASPP to capture multi-scale informa-
tion. The extracted multi-scale features are then fused into the decoder module using a Cross-Contextual
attention mechanism. Finally, in the decoding path, the extracted multi-scale features are up-sampled and
concatenated with the low-level features from the encoder to refine the feature representation.

In summary, the hybrid architectures mentioned above either replace CNN with a Transformer in the
encoder (e.g. Swin UNETR [25]) or stack a CNN with a Transformer sequentially to form a new encoder
( e.g. TransUNet [22]). Replacing CNN with a Transformer in the encoder gives the ability to model long
distance dependency in the network. However, it results in a lack of detailed texture feature extraction due
to the removal of CNN in the encoder. Stacking CNN with a Transformer to form a new encoder fails to
account for the complementary relationship between the global modeling capability of self-attention and the
local modeling capability of convolution. Instead, they treat the convolution operation and self-attention as
two separate and unrelated operations [28, 29].

To overcome these drawbacks, the encoder in CS-Unet uses CNN and Transformer in parallel to obtain
rich feature information from training images. CNN is used to extract low-level features and Swin-T is used
to extract global contextual features, which are then fused using skip connections to the decoder at different
stages/layers. Moreover, to reduce feature loss in the transmission process and to increase the contextual
information extracted by the Swin-T encoder, the Multi-Layer Perceptron (MLP) in two successive Swin-T
blocks was replaced by Residual Multi-Layer Perceptron (ResMLP).

3 Methodology

In this section, we give details on how CS-UNet is implemented, how the dataset MicroLite is created, and
how the encoders of CS-UNet are pre-trained.

3.1 CS-UNet Architecture

CNN does not capture long-range spatial relation due to its intrinsic locality. Transformer is able to overcome
this limitation but it is limited in capturing low-level features. Since both local and global information are
essential for dense prediction tasks such as segmentation in challenging contexts, hybrid models with both
CNN and Transformer encoders are expected to provide better performance for image segmentation. CS-
UNet, as shown in Figure 2, is such a hybrid model that consists of CNN encoders, Transformer encoders,
bottlenecks, Transformer decoders, and skip connections. The CNN encoders extract low-level features and
the Swin-T encoders extract global contextual features. Each Swin-T encoder operates on the input image
divided into non-overlapping patches, applying self-attention mechanisms to capture global dependencies.
The Swin-T encoders capture long-range dependencies and contextual information from the entire image at
different scales.

Inspired by the TFCN (Transformers for Fully Convolutional dense Net) [31] and Lightweight Swin-
Unet [30], we replaced the Multi-Layer Perceptrons (MLP) in two successive Swin-T blocks with Residual
Multi-Layer Perceptrons (ResMLP) illustrated in Figure 3. ResMLP is used to reduce feature loss in the
transmission process and to increase the contextual information extracted by the encoder. ResMLP is illus-
trated in Figure 4, which consists of two GELU [32] nonlinear layers, three Linear layers, and two dropout
layers. The CNN encoder processes the input image in a series of convolution layers, gradually reducing
the spatial dimensions while extracting hierarchical features. Along the way, the encoder captures low-level
features in early layers and higher-level semantic features in deeper layers.

6



Fig. 2 CS-UNet architecture includes CNN and Swin-T encoders, bottlenecks, skip connections, and Swin-T decoder.

To fuse the information from both encoders, the skip connections concatenate the feature maps from
the CNN encoder and the Swin-T encoder with the corresponding decoder layers. To ensure compatibility
between the feature dimensions of the CNN and the Swin-T encoders, we normalize the dimensions before
fusing them. This is achieved by passing the features obtained from the CNN block through a linear embed-
ding layer, which flattens and reshapes the feature map from the shape of (B,C,H,W ) to (B,C,H ×W ),
where B, C, H, W are the batch size, the number of channels, the height, and the width of the feature map,
respectively. The flattened feature map is transposed to swap the last two dimensions resulting in the shape
of (B,H ×W,C) and is then fused with extracted features from the Swin-T encoder. By fusing the infor-
mation from different encoder pathways, the skip connections enable the decoder to benefit from both the
local spatial details captured by the CNN encoder and the global context captured by the Swin-T encoder.

The decoder is similar to that of Swin-Unet [23], which employs the patch-expanding layer to up-sample
the extracted deep features by reshaping the feature maps of adjacent dimensions to form a higher-resolution
feature map, which effectively achieves a 2× up-sampling. Additionally, it reduces the feature dimension
to half of the original dimension. This allows the decoder to reconstruct the output with increased spatial
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Fig. 3 ResMLP is used to improve Swin Transformer block [30].

Fig. 4 ResMLP module block [30].

resolution while reducing the feature dimension for efficient processing. The final patch-expanding layer
further performs a 4× up-sampling to restore the resolution of the feature maps to match the input resolution
(W × H). Finally, a linear projection layer is applied to these up-sampled features to generate pixel-level
segmentation predictions.

Different CNN families can be used in the encoder part such as EfficientNet, ResNet, MobileNet,
DenseNet, VGG, and Inception. We initialize CNN weights using MicroNet and the transformer weights
using MicroLite.

3.2 Pre-training Dataset

The MicroLite images were collected from multiple sources including images from different materials and
compounds using several measurement techniques such as light microscopy, SEM, TEM, and X-ray. MicroLite
aggregates the Aversa dataset [33], UltraHigh Carbon Steel Micrograph [34], SEM images from the Materials
Data Repository, and the images from some recent publications [35–42]. The Aversa dataset includes over
25,000 SEM microscopy images in 10 classes, where each class consists of images in different scales (including

8



1, 2, 10, 20 um and 100, 200 nm) and contrast. To properly classify these images, we used a pre-trained VGG-
16 model to extract feature maps from these images and used a K-means algorithm to cluster the feature
maps so that images with similar feature maps are grouped in the same class. After the pre-processing step,
we obtained 53 classes. The authors of Aversa dataset manually classified a small set of the images (1038)
into a hierarchical dataset, where the 10 classes are further divided into 27 subclasses [33]. Our classification
of these 1038 images is largely consistent with the manually assigned subclasses. Note that we have more
classes since we processed the entire Aversa dataset.

In total, MicroLite includes about 50,000 microscopy images labelled in 74 classes, which are obtained
using the following pre-processing steps.

1. Remove any artifacts such as scale bars from the images.
2. Split the images into 512×512-pixel tiles with or without overlapping depending on the size of the original

images.
3. Apply data augmentation to increase the size of the dataset.
4. Aggregate the original image, the images tiles, and the augmented images to form the final dataset.

Since our current approach employs VGG-16 and K-means for feature map clustering in the pre-processing
step, future work could benefit from integrating advanced clustering-based transformer methods, such as
ClusterFormer [17], which can lead to more efficient and accurate results.

3.3 Pre-training Swin-T Encoders

We trained Swin Transformers on microscopy images to learn feature representation so that it can be
transferred to tasks such as segmentation. We evaluated two types of training.

1. Fine-tune a model pre-trained on ImageNet with MicroLite (denoted by ImageNet → MicroLite).
2. Pre-train a model with MicroLite from scratch (denoted by MicroLite).

The classification tasks uses Swin-T, which is the tiny version of the Swin Transformer. Swin-T consists
of two types of architectures: the original Swin-T with [2,2,6,2] transformer blocks and the intermediate
network with [2,2,2,2] transformer blocks. Figure 5 shows the original architecture of Swin-T. We speculate
that intermediate network may be enough for microscopy analysis tasks since the earlier layers learn corner
edges and shapes, the intermediate layers learn the texture or patterns, and deeper network layers in the
original models learn the high-level features such as eyespots and caudal appendages. The original and
intermediate Swin-T models were pre-trained on MicroLite from scratch, where the model weights are
randomly initialized. The two models were also pre-trained on ImageNet and fine-tuned on MicroLite.

The pre-training step uses an AdamW optimizer for 30 epochs with a cosine-decay learning-rate scheduler
with 5 epochs of linear warm-up and batch size of 128. The initial learning rate is 10−3 and weight decay
is 0.05. The fine-tuning step also uses an AdamW optimizer for 30 epochs with a batch size of 128 but the
learning rate is reduced to 10−5 and the weight decay is reduced to 10−8. Models were trained until there
was no improvement to the validation score using an early stopping criterion with a patience of 5 epochs.
Training data had been augmented using albumentations library, which included random changes to the
contrast and the brightness, vertical and horizonal flips, photometric distortions, and added noise.

Swin-T models were trained by classifying microscopy images into 74 different classes. Swin-T models
were either pre-trained on ImageNet (specifically the imageNet1K dataset) and fine-tuned on MicroLite, or
trained with MicroLite with randomized parameters. The training stops when the validation accuracy does
not improve after 5 epochs. The model accuracy is evaluated using the top-1 and top-5 accuracy. The top-1
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Fig. 5 The original Swin-T architecture consists of four stages. Each stage contains two Swin transformer blocks except the
stage three that contains six Swin transformer blocks [7]

Table 1 Classification accuracy of pre-trained models, where the method “ImageNet → MicroLite”
indicates that the models were pre-trained on ImageNet and then fine-tuned on MicroLite.

Swin-T arch. Pre-training method top-1 accuracy top-5 accuracy # of epochs

Original
MicroLite 84.23 95.91 23
ImageNet → MicroLite 84.63 96.353 13

Intermediate
MicroLite 84.0 96.91 19
ImageNet → MicroLite 84.45 97.83 12

accuracy measures the percentage of test samples for which the correct label is predicted while the top-5
accuracy measures the percentage of correct labeling in the top five predictions.

As shown in Table 1, the Swin-T models, when trained from scratch, take longer to converge. Specifically,
the original Swin-T model takes 23 epochs, while the intermediate version takes 19 epochs. In contrast,
the Swin-T models pre-trained on the ImageNet and then fine-tuned on the MicroLite converge faster. The
original Swin-T model takes only 13 epochs, while the intermediate version takes 12 epochs. On average,
the models initialized with ImageNet weights converged about 40.16% faster than those with the random
initialization. Original Swin-T fine-tuned on MicroLite after pre-training with ImageNet achieved the top-1
accuracy of 84.63%. Overall, the Swin-T models pre-trained on ImageNet and fine-tuned on MicroLite have
higher accuracy and faster convergence.

For the down-stream segmentation tasks, several models were trained for each task, which include Swin-
Unet, HiFormer, and TrasDeeplapv3+. A comparative analysis was performed on these models that were
pre-trained with ImageNet and microscopy images.

4 Evaluation of CS-UNet on Microscopy Images

In this section, we evaluate CS-UNet by comparing its performance with the results of Stucker et al. [6] on
their 7 microscopy datasets derived from two materials: nickel-based super-alloys (Super) and Environmental
Barrier Coatings (EBC). Super datasets have 3 classes: matrix, secondary, and tertiary. EBC datasets have
two classes: the oxide layer and the background (non-oxide) layer. The number of images in each dataset
split is shown in Table 2. Super-1 and EBC-1 contain the full dataset labeled for their respective materials.
Super-2 and EBC-2 have only 4 images in the training set to evaluate the performance of few-shot learning.
Super-3 and EBC-3 have only 1 image in the training set to evaluate performance of one-shot learning.
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Super-4 have test images taken under different imaging and sample conditions to evaluate the performance
of out-of-distribution learning. All segmentation models in this study were trained using PyTorch [43].

Table 2 Number of Microscopy images in the training, validation, and test set for each
experimental dataset

Experiment # of training images # of validation images # of test images
Super-1 10 4 4
Super-2 4 4 4
Super-3 1 4 4
Super-4 4 4 5
EBC-1 18 3 3
EBC-2 4 3 3
EBC-3 1 3 3

EBC and Super datasets were augmented in ways similar to [6], which includes random cropping to
512 × 512 pixels, random changes to contrast, brightness, and gamma, and added blurring or sharpening.
EBC dataset was horizontally flipped and Super dataset was randomly flipped vertically and horizontally
and rotated. The training parameters such as the optimizer and the learning rate were adopted from prior
research [6]. The training step used the Adam optimizer with an initial learning rate of 2 × 10−4 until
the validation accuracy showed no improvement for 30 epochs. Afterwards, the training continued with a
learning rate of 10−5 until early stopping was triggered after an additional 30 epochs without any validation
improvement. Since the datasets are imbalanced, the loss function was set by the weighted sum of Balanced
Cross Entropy (BCE) and dice loss with a 70% weighting towards BCE [6].

CS-UNet has a flexible architecture so that it can be trained with different encoders initialized with
different pre-trained parameters. Table 3 shows the various combinations of pre-trained weights that were
used to initialize the CS-UNet encoders. The second column shows the pre-trained weights that initialize
the Swin-T encoder and the third column shows the pre-trained weights that initialize the CNN encoder.
In the last column, we use the term microscopy to refer to the fact that the CNN encoders are initialized
with weights pre-trained on Stuckner et al. [6]’s MicroNet and Swin-T encoders are initialized with weights
pre-trained on our MicroLite dataset. Other combinations of pre-trained weights can also be used to train
the CS-UNet model. For example, the Swin-T encoder could be initialized with the MicroLite weights and
the CNN encoder could be initialized with the ImageNet→MicroNet weights. The flexibility of the CS-UNet
architecture allows researchers to experiment with different combinations of pre-trained weights to find the
best combination for their specific task.

Table 3 The combinations of encoders in CS-UNet, where the second column shows the pre-training models
for the Swin-T encoders and the third column shows the pre-training models for the CNN encoders. The last
column shows the models for both types of encoders, where ‘Microscopy’ is either MicroNet or MicroLite.

Swin-T arch. Swin-T pre-train model CNN pre-train model CS-UNet pre-train model
Original ImageNet ImageNet ImageNet
Original MicroLite MicroNet microscopy
Original ImageNet → MicroLite ImageNet → MicroNet ImageNet → Microscopy
Intermediate MicroLite MicroNet microscopy
Intermediate ImageNet → MicroLite ImageNet → MicroNet ImageNet → Microscopy
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Table 4 The top performance (IoU) of UNet++/UNet pre-trained on MicroNet [6], Transformer-based
algorithms pre-trained on MicroLite, and CS-UNet pre-trained on MicroNet and MicroLite.

Dataset UNet++/UNet + MicroNet Transformer + MicroLite CS-UNet + MicroNet + MicroLite
Super-1 96.4% 95.72% 96.43%
Super-2 94.2% 95.16% 96.06%
Super-3 93.0% 92.23% 93.5%
Super-4 78.5% 78.91% 82.13%
EBC-1 97.6% 96.59% 97.66%
EBC-2 93.3% 91.11% 92.82%
EBC-3 65.9% 82.13% 70.46%

4.1 Comparison between CS-UNet and CNN/Transformer-based Algorithms

Table 4 compares the top performance of UNet++/UNet pre-trained on MicroNet (from Figure 3–5
of et al. [6]), Transformer-based segmentation algorithms (including Swin-Unet, TransDeepLabV3+, and
HiFormer) pre-trained on MicroLite, and CS-UNet pre-trained on MicroNet and MicroLite. The highest
accuracy for each experiment is shown in bold font. CS-UNet has the best performance in most experiments
except EBC-2 and EBC-3. For experiments with ample training data such as Super-1 and EBC-1, the differ-
ence between UNet++/UNet, Transformer, and CS-UNet is small. For few-shot learning experiments such
as Super-2 and EBC-2, the accuracy gain of CS-UNet is modest. For one-shot learning experiments, the
result is mixed, where CS-UNet has modest improvement in Super-3 while significant gain in EBC-3. For
out of context learning, CS-UNet shows significant improvement over UNet or Transformer.

Note that while CS-UNet generally outperforms CNN or Transformer-based methods, CS-UNet some-
times is worse than one of them. For example, for EBC-3 (one-shot learning), Transformer-based method
is significantly better in IoU accuracy (82.13% vs 70.46%). However, CS-UNet and UNet are slightly bet-
ter than Transformer for Super-3, which is also one-shot learning. For one-shot and few-shot learning cases,
CNN and Transformer have uneven performances. Since CS-UNet combines both types of encoders, it tends
to average out the performance.

Overall, this result suggests that CS-UNet has more consistent performance than prior algorithms.
CS-UNet is similar or significantly better than UNet++/UNet in all experiments and it is better than
Transformers for most experiments. Note that MicroLite is about half the size of MicroNet. Despite this,
Transformer + MicroLite has comparable or better performance than that of UNet++/UNet + MicroNet.

4.2 Performance Impact of Pre-training Data and Encoder Configurations

Table 5 The configuration of top-performing Transformer-based algorithms when pre-trained on ImageNet and
MicroLite.

pre-train ImageNet MicroLite
test data Segmentation Algo. Swin-T Arch. IoU Segmentation Algo. Swin-T Arch. IoU
Super-1 TransDeepLabV3+ Orginal 95.25% Swin-Unet Intermediate 95.72%
Super-2 Swin-Unet Orginal 94.37% TransDeepLabV3+ Intermediate 95.16%
Super-3 Swin-Unet Orginal 89.78% TransDeepLabV3+ Intermediate 92.23%
Super-4 Swin-Unet Orginal 76.42% Swin-Unet Orginal 78.91%
EBC-1 Swin-Unet Orginal 96.11% TransDeepLabV3+ Intermediate 96.59%
EBC-2 HiFormer Orginal 84.21% TransDeepLabV3+ Orginal 91.11%
EBC-3 TransDeepLabV3+ Orginal 65.77% Swin-Unet Orginal 82.13%
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The middle column of Table 4 gives the best performance of Transformer-based algorithms including
Swin-Unet, TransDeepLabV3+, and HiFormer, where their encoders have either the original or the interme-
date swin-T architecture and they are pre-trained with either ImageNet or ImageLite dataset. Table 5 lists
the configurations of the Transformer-based algorithms with the best performance. The results indicate that
pre-training on MicroLite consistently provides better performance than pre-training on ImageNet. Also,
intermediate architecture of Swin-T may be sufficient if pre-trained on microscopy images, who leads to less
training time. While the accuracy gain of pre-training on MicroLite is modest with full training data (Super-
1/EBC-1), for few-shot, one-shot, and out-of-distribution learning (Super-2/3/4, EBC-2/3), the performance
improvement is more significant.

Table 6 The best performing encoder configurations of CS-UNet when pre-trained on ImageNet and microscopy images.

pre-train ImageNet MicroNet + MicroLite
test data CNN Encoder Swin-T Arch. IoU CNN Encoder Swin-T Arch. IoU
Super-1 ResNext50 32x4d Original 96.22% InceptionV4 Intermediate 96.43%
Super-2 VGG16-bn Original 96.03% VGG16-bn Intermediate 96.06%
Super-3 EfficientNet-b3 Original 87.01% EfficientNet-b4 Intermediate 93.5%
Super-4 EfficientNet-b2 Original 78.89% EfficientNet-b3 Original 82.13%
EBC-1 SE ResNeXt50 32x4d Original 98.0% SE Renet152 Original 97.66%
EBC-2 SE ResNet-101 Original 92.0% SE ResNet-101 Intermediate 92.82%
EBC-3 SE ResNet-50 Original 61.71% SE ResNeXt-101 32x4d Original 70.46%

The right column of Table 4 gives the best performance of CS-UNet when pre-trained on ImageNet
and microscopy images. In Table 6, we include the CNN and Transformer encoder combinations that have
the best performance for each test when pre-trained with ImageNet and microscopy images. Similar to the
Transformer-based algorithms, pre-training with microscopy images provides the best performance in most
cases except EBC-1, which is the full training set. There is significant performance improvement for one-shot
and out-of-distribution learning (Super-3/4 and EBC-3). This is consistent with the findings of Stuckner et
al. [6]. However, the performance gain of few-shot learning is not as noticeable (Super-2 and EBC-2) since
the performance of CS-UNet is less sensitive to pre-training data.

In Appendix D, we included some examples of segmentation results for the Super and EBC datasets to
provide a visual comparison of CS-UNet when pre-trained on microscopy over natural images.

5 Evaluation of CS-UNet on Medical Images

While the initial application of CS-UNet is materials science images, we believe that CS-UNet can also
improve the segmentation performance of medical images. Furthermore, CS-UNet pre-trained on MicroLite
should have better performance for medical images such as computed tomography (CT) images since Micro-
Lite also contains X-Ray images. To this end, we evaluated the performance of CS-UNet pre-trained on
microscopy images and ImageNet on a medical image dataset called the Synapse multi-organ segmentation
dataset (Synapse) [44].

Synapse dataset includes 30 patient cases with 3779 axial abdominal clinical CT images, where 18
cases are used for training and 12 cases are used for testing. The dataset contains 8 abdominal organs
(aorta, gallbladder, left kidney, right kidney, liver, pancreas, spleen, and stomach). Each CT volume includes
85 ∼ 198 slices of 512×512 pixel images, with a voxel spatial resolution of [0.54 ∼ 0.54]×[0.98 ∼ 0.98]×[2.5 ∼
5.0] mm3.

13



Each Synapse image is reduced to 224 × 224 pixels. It should be noted that we follow [23] to choose the
optimizer and learning rate for Synapse dataset. The training batch size and learning rate are 24 and 0.05,
respectively. Our model is trained with the SGD optimizer with a momentum of 0.9 and weight decay of
0.0001. The average Dice-Similarity coefficient (DSC) and average 95% Hausdorff Distance (HD) are used
as evaluation metrics. HD metric provides a more precise estimate of performance with respect to boundary
errors. DSC values range from 0 to 1 with the larger values indicating better performance while the smaller
values of HD indicate better performance.

Table 7 Comparison of CS-UNet and State-Of-The-Art algorithms on Synapse (the columns are average DSC in %,
average HD in mm, and DSC in % for each organ). Blue indicates the best result and red displays the second-best.

Algorithm DSC↑ HD↓ Aorta Gallbladder Kid(L) Kid(R) Liver Pancreas Spleen Stomach

U-Net [19] 76.85 39.70 89.07 69.72 77.77 68.60 93.43 53.98 86.67 75.58
Att-UNet
[45]

77.77 36.02 89.55 68.88 77.98 68.60 93.43 53.98 86.67 75.58

TransUNet
[22]

77.48 31.69 87.23 63.13 81.87 77.02 94.08 55.86 85.08 75.62

Swin-Unet
[23]

79.13 21.55 85.47 66.53 83.2 79.61 94.29 56.58 90.66 76.60

TransDeepLab
[27]

80.16 21.25 86.04 69.16 84.08 79.88 93.53 61.19 89.00 78.40

HiFormer
[26]

80.39 14.70 86.21 65.69 85.23 79.77 94.61 59.52 90.99 81.08

CS-UNet1 84.20 9.89 88.42 72.86 86.84 85.59 95.44 70.51 90.11 83.81
CS-UNet2 83.27 15.26 88.07 71.32 88.0 84.38 94.80 65.64 89.95 83.49

1CS-UNet (VGG16 bn and intermediate Swin-T) is pre-trained on microscopy images.
2CS-UNet (VGG16 bn and original Swin-T) is pre-trained on ImageNet.

We compared the performance of CS-UNet with 6 State-Of-The-Art (SOTA) algorithms including 2
CNN-based, 2 Transformer-based, and 2 hybrid algorithms, which are U-Net, Att-UNet, TransUNet, Swin-
Unet, Transdeeplab, and HiFormer. Note that all these models are initialized with the weights pre-trained
on ImageNet. Table 7 shows the performance of CS-UNet and SOTA methods in terms of the average DSC
and average 95% HD on 8 abdominal organs. The segmentation of 2 sample images of Synapse is shown in
Figure 6, which illustrates the better accuracy of CS-UNet when pre-trained on microscopy than on natural
images.

Our results highlight the remarkable performance of CS-UNet that, when pre-trained on microscopy
images, has the highest segmentation accuracy at 84.20% in average DSC and the lowest average HD at
9.89 mm. Even when pre-trained on ImageNet, CS-UNet has the second best accuracy at 83.27% in average
DSC though its average HD at 15.26 mm is slightly higher than the 14.70 mm of the second best algorithm
HiFormer. Lower HD indicates superior edge prediction capabilities. For individual organs, with the exception
of Aorta, CS-UNet has the best and/or the second best segmentation accuracy in DSC. Even for Aorta,
the accuracy of CS-UNet is also very close to the best performer with about 1% difference in accuracy.
Figure 6 illustrates the visual differences between the segmentation ground truth of synapse images with
the segmentation masks made by CS-UNet, when it is pre-trained on microscopy images and on ImageNet.
The masks made by CS-UNet pre-trained ImageNet tends to have more over-segmentation problems.

Compared to the SOTA methods, CS-UNet has larger model size than some of the models though the
inference time is on the lower end. As shown in Table 8, our method has 44.96 million parameters, which
is more than Hiformer, Swin-Unet, and Transdeeplab methods but fewer than TransUnet. Additionally,
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Fig. 6 This figure compares the ground truth of 2 Synapse images (left column) with the segmentation masks of CS-UNet
pre-trained on microscopy images (middle column) and CS-UNet pre-trained on ImageNet (right column). The red rectangles
identify the regions where CS-UNet pre-trained on ImageNet tends to have over-segmentation problems compared to CS-UNet
pre-trained on microscopy images.

CS-UNet shows a computation time score of 30:23 minutes during the testing phase. Despite having a
relatively higher number of parameters, CS-UNet exhibits less computational time compared to HiFormer,
Transdeeplab, and TransUnet. Importantly, it consistently outperforms them in terms of overall performance.

6 Ablation study

CS-UNet combines CNN and Transformer encoders with skip connections to capture local and global fea-
tures. To explore the influence of different factors on the model performance, we conducted ablation studies
on the Synapse dataset to evaluate how the number of skip connections and how the CNN and Transformer
encoder branches influence the performance. We use the weights pre-trained on ImageNet to initialize both
the encoders and the decoder of CS-UNet.

6.1 Effect of the encoders in CS-UNet

As shown in Table 9, we separate the CNN and Transformer encoder branches. After removing the CNN
branch, the mean DSC drops by about 2.5% and HD increases by about 4.48 mm, while DCS drops by
about 7.6% and HD increases by about 11.74 mm if we remove the Transformer branch. It shows that the
combination of CNN and Swin Transformer in CS-UNet can fully utilize the advantages of both types of
models and achieve better segmentation performance than either of them alone.
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Table 8 Comparison of CS-UNet and State-Of-The-Art algorithms based on model parameters,
number of epochs to train, inference time for 1568 axial abdominal clinical CT images, and model size.

Algorithm # of params (M) # of training epochs inference time (min) model size (MB)

TransUnet
[22]

105.28 150 31:09 414.412

Swin-Unet
[23]

27.17 150 30:25 108.058

HiFormer
[26]

25.51 400 30:56 101.161

TransDeepLab
[27]

21.14 200 30:59 86.343

CS-UNet
(CNN:
VGG16 bn)1

44.96 150 30:32 177.613

1CS-UNet is a flexible method that can use different CNN encoders. VGG16.bn is chosen here since it
provided the best performance for Synapse. Appendix C shows the number of parameters of CS-UNet
with different CNN encoders.

Table 9 Ablation study of CS-UNet encoders for Synapse dataset, separate the CNN
branch and Transformer branch

Enoder DSC↑ HD↓
CS-UNet (Orginal) 83.27 15.26
CS-UNet without CNN branch 80.68 19.74
CS-UNet without Transformer
branch

75.61 27.00

6.2 Effect of the number of skip connections

The skip connections in CS-UNet connect the encoders and the decoders at 3 different stages of scale res-
olutions. We investigated the impact of varying the number of skip connections (0, 1, 2, and 3) on the
segmentation performance of CS-UNet. Table 10 demonstrates that the higher number of skip connec-
tions enhances the segmentation performance of CS-UNet. Consequently, for better performance, we set the
number of skip connections to 3 in this study.

Table 10 Ablation study on the impact of the number of skip connections.

Skip
Connection

DSC↑ HD↓ Aorta Gallbladder Kid(L) Kid(R) Liver Pancreas Spleen Stomach

0 75.81 23.72 79.801 62.24 81.57 77.66 93.70 50.83 85.00 75.64
1 78.84 18.31 84.07 62.69 84.93 80.24 94.02 58.46 86.91 79.37
2 82.38 15.72 88.06 70.17 86.89 83.86 95.01 64.52 88.34 81.64
3 83.27 15.26 88.07 71.32 88.0 84.38 94.800 65.64 89.95 83.49

7 Conclusion

This paper introduced a novel U-shaped segmentation algorithm CS-UNet, which combines CNN and Trans-
former encoders in parallel. The encoders of CS-UNet extract low-level and high-level features from input
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images, which enables effective segmentation of images with long-range dependencies and high spatial resolu-
tion. Our tests on materials images showed that CS-UNet has better or comparable performance than prior
state-of-the-art methods. Our tests also showed that the encoders pre-trained on microscopy images leads
to better feature representation and thus better segmentation performance than the encoders pre-trained
on natural images. We further evaluated CS-UNet on a set of medical CT images, which demonstrated clear
advantages over the prior state-of-the-art methods. Pre-training on microscopy images also improved the
segmentation performance on the medical images due to the inclusion of X-ray images in the pre-training
dataset.

While CS-UNet can preserve spatial information and process long-range dependencies, it is computa-
tionally intensive compared to CNN and Transformer-based algorithms. As future work, we will explore the
training of other Transformer architectures, such as Focal Transformer and FocalNet, on large microscopy
datasets. These architectures may offer further advancements in image segmentation, expanding the range
of available options and potential improvements in materials analysis tasks. Future investigations may also
offer deeper insights into the decision-making processes of image segmentation. As highlighted in Section 2,
the techniques such as DNC [15], ClusterFormer [17], and CLUSTSEG [18] hold promise for achieving greater
transparency and interpretability in these models.

Data Availbility

The pre-trained Swin-T models of our experiments are available at our GitHub repository:
https://github.com/Kalrfou/SwinT-pretrained-microscopy-models
This work also used the pre-trained CNN models from
https://github.com/nasa/pretrained-microscopy-models
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Appendix A Average Performance of Segmentation Algorithms
on Microscopy Images

In this section, we compare the effect of pre-training on the average performance of CNN-based, Transformer-
based segmentation algorithms, and CS-UNet. After that, we compare the average performance of the three
types of algorithms. Our results indicate that pre-training on microscopy images generally has positive
impacts to the performance. CS-UNet outperforms UNet in all experiments while it has similar or better
performance than Transformer-based algorithms.

A.1 CNN-based Image Segmentation

Table 8 The average performance of UNet when it is initialized with different pre-training weights. Each entry shows the
mean and standard deviation of IoU value for a pre-training model. The best score per test is in bold.

Test data ImageNet MicroNet ImageNet→MicroNet

Super-1 96.09%±0.20% 95.99%±0.16% 95.92%±0.19%
Super-2 95.08%±1.27% 95.28%±0.26% 95.38±1.03%
Super-3 63.30%±4.55% 74.61%±17.21% 78.69±11.24%
Super-4 71.46%±6.88% 75.1%±9.0% 77.78%±0.17
EBC-1 95.18%±0.82% 94.65%±1.44% 95.69%±1.03%
EBC-2 80.74%±10.76% 87.06%±1.55% 86.0%±5.17%
EBC-3 39.36%±7.81% 41.95%±4.89% 46.44%±4.35%

We examine the performance of UNet [19] with 3 types of pre-trained encoders. We include this result
since the configurations of CS-UNet only used 19 of the 35 CNN encoders in Stuckner et al. [6]. As shown in
Appendix B, the 19 encoders have top-5 accuracy in at least one of the segmentation tasks. This selection
reduces the number of experiments needed for a fair comparison,

The average performance of UNet when it is pre-trained with ImageNet or MicroNet is in Table 8,
which indicates that ImageNet→MicroNet model (i.e. CNN encoders initialized with ImageNet model and
fine-tuned with MicroNet) achieves the best outcome in majority of the cases. The configurations of the
top-performing CNN encoders are shown in Table 9, which also indicates that pre-training on MicroNet
provides better outcome in most of the cases. EfficientNet and Se ResNet families are better than the older
families such as VGG.

Table 9 The best performing CNN encoders of UNet that are pre-trained on ImageNet and MicroNet

ImageNet MicroNet

Dataset best performing CNN encoder IoU best performing CNN encoder IoU

Super-1 SE ResNeXt-50 32x4 96.2% SE ResNeXt-101 32x4d 95.95%
Super-2 EfficientNet-b5 95.45% SENet-154 95.50%
Super-3 EfficientNet-b3 70.74% EfficientNet-b3 92.5%
Super-4 EfficientNet-b2 77.34% EfficientNet-b1 78.95%
EBC-1 SENet-154 96.23% SENet-154 96.67%
EBC-2 DenseNet201 91.36% InceptionResnetV2 90.97%
EBC-3 EfficientNet-b3 44.4% EfficientNet-b3 52.84%
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Unsurprisingly, our results are largely consistent with that of Stuckner et al. [6], since we initialized
our networks with the weights pre-trained on MicroNet. Specifically, pre-training with MicroNet improves
the performance of one-shot and out-of-distribution learning. Since we picked CNN encoders that have
top-5 performance in at least one experiment, the IoU scores are higher than the average scores shown in
Stuckner et al.. In fact, the performances on Super-2 (few-shot learning) are basically the same with different
pre-training models.

A.2 Transformer-based Image Segmentation

Table 10 Average performance of Transformer-based segmentation algorithms when initialized with different
pre-trained weights. Each entry shows the mean and standard deviation of IoU value for a pre-training model. The highest
score for each dataset is in bold.

Original Swin-T Intermediate Swin-T
Test set ImageNet MicroLite ImageNet→MicroLite MicroLite ImageNet→MicroLite
Super-1 94.94%±0.31% 95.0%±0.43% 94.89%±0.45% 94.72%±0.97% 94.41%±0.51%
Super-2 93.26%±0.76% 93.83%±0.62% 93.55%±0.30% 94.03%±0.83% 93.43%±0.97%
Super-3 76.24%±7.06% 79.53%±13.69% 70.65%±10.74% 78.74%±17.08% 69.31%±6.44%
Super-4 73.04%±1.64% 73.18%±1.81% 72.89%±2.93% 72.10%±2.39% 71.23%±2.32%
ECB-1 91.73%±3.40% 94.67%±1.59% 91.44%±2.87% 94.95%±1.41% 90.56%±3.01%
ECB-2 82.47%±5.90% 86.02%±4.98% 83.20%±3.34% 86.67%±2.61% 83.07%±4.22%
ECB-3 52.21%±6.76% 65.90%±13.12% 55.15%±10.42% 56.91%±5.24% 49.03%±4.67%
mean IoU 80.56 84.02 80.25 82.59 78.72

Table 10 shows the average performance of Transformer-based segmentation algorithms (Swin-Unet,
HiFormer, and TransDeepLabv3+) using different configurations of pre-training and Swin-T architectures.
We compared the algorithms by using the original or the intermediate Swin-T architecture and by initializing
their weights with ImageNet or microscopy pre-training models. Our results indicate that the algorithms
perform well with the MicroLite pre-training model and that the original Swin-T architecture is slightly
better with 1-shot learning and out-of-distribution learning. Overall, pre-training with microscopy images
provided better results for Transformer-based segmentation algorithms than pre-training on natural images.

A.3 CS-UNet Image Segmentation

Table 11 Average performance of CS-UNet when initialized with different pre-trained weights for each experiment. Each
entry in the table shows the mean value and standard deviation of the evaluation IoU metric for a particular pre-training
model. The highest accuracy score for each dataset is shown in bold.

Original Swin-T Intermediate Swin-T
Test set ImageNet Microscopy ImageNet→Microscopy Microscopy ImageNet→Microscopy

Super-1 96.11%±0.11% 96.19%±0.13% 96.16%±0.14% 96.22%±0.15% 96.02%±0.34%
Super-2 95.63%±0.23% 95.63%±0.44% 95.78%±0.14% 95.67%±0.46% 95.86%±0.11%
Super-3 78.64%±9.3% 76.59%±15.78% 78.01%±13.32% 78.18%±12.13% 80.68%±12.60%
Super-4 73.74%±3.74% 77.25%±3.31% 72.87%±6.26% 76.65%±2.53% 75.07%±1.10%
ECB-1 97.09%±0.86% 95.48%±1.04% 96.4%±0.79% 94.72%±1.37% 96.21%±0.78%
ECB-2 83.57%±7.71% 86.12%±1.76% 88.58%±1.46% 86.41%±1.65% 88.08%±2.98%
ECB-3 45.88%±10.12% 44.7%±8.57% 46.08%±13.92% 46.35%±9.91% 45.16%±10.58%
mean IoU 81.5 81.71 81.98 82.03 82.44
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We also compare the performance of our hybrid segmentation algorithm CS-UNet in Table 11 when
it uses the original or the intermediate Swin-T architecture and when it is initialized with weights from
ImageNet or microscopy models. Since CS-UNet uses both CNN and Transformer encoders, the results are
mixed where pre-training with microscopy images does not provide better performance in all cases. The
weaker performance of CNN encoders reduced the advantage of Transformer encoders when they are pre-
trained on microscopy images. When we consider the mean IoU scores across all experiments, however,
pre-training with microscopy images still has the better outcome.

A.4 Comparison of CS-UNet, CNN-based, and Transformer-based Algorithms

Table 12 The average performance of CNN, Transformer, and CS-UNet on all datasets. Each entry in the table shows
the mean value and standard deviation of the IoU evaluation metric for a particular method.

Test set UNet [19] CS-UNet Swin-Unet [23] TransDeepLabV3+ [27] HiFormer [26]

Super-1 95.98% ± 0.20% 96.14% ± 0.21% 95.30%±0.34 % 94.91% ± 0.47% 94.30% ± 0.58%
Super-2 95.24% ± 0.96% 95.70% ± 0.33% 93.39% ± 1.1% 94.1% ± 0.61% 93.11% ± 0.5%
Super-3 72.20% ± 13.79% 77.99% ± 12.90% 83.0% ± 6.14% 81.99% ± 8.29% 64.19% ± 8.14%
Super-4 74.57% ± 7.23% 75.08% ± 4.15% 77.16% ± 0.97% 70.95% ± 1.86% 72.61% ± 1.67%
EBC-1 95.17% ± 1.21% 95.98% ± 1.28 93.49± 2.66% 91.59% ± 4.13% 93.96% ± 1.1%
EBC-2 84.60% ± 7.48% 86.73%± 4.03% 83.13% ± 3.1% 83.1% ± 5.68% 86.67% ± 1.44%
EBC-3 42.58% ± 6.57% 45.69% ± 10.78% 58.62% ± 20.37% 58.7% ± 9.70% 52.84% ± 5.41%

In Table 12, we compare the performance of UNet, CS-UNet, and Transformer-based algorithms
(Swin-Unet, HiFormer, and TransDeepLabv3+) averaged over different pre-training models and Swin-T
architectures. The results show that CS-UNet is better than UNet on average across all experiments. While
Transformer-based segmentation algorithms may be superior in 1-shot learning or out-of-distribution learn-
ing, their performance is not always consistently better than UNet. This result indicates that our hybrid
algorithm CS-UNet is more robust regardless of the pre-training models.
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Appendix B CNN Encoders Chosen for the Evaluation of
CS-UNet and UNet

Table 13 Each encoder has at least 1 top-5 average IoU score for Super/EBC datasets (based on
Figure 4 in [6]).

CNN Encoder Super-1 Super-2 Super-3 Super-4 EBC-1 EBC-2 EBC-3
SE ResNet-50 [46] ✓
SE ResNeXt-50 32x4d [47] ✓ ✓ ✓ ✓ ✓
SE ResNeXt-101 32x4d [47] ✓ ✓ ✓
SE ResNet-152 [46] ✓ ✓
SE ResNet-101 [46] ✓ ✓ ✓
SENet-154 [46] ✓ ✓ ✓
ResNeXt-101 32x8d [47] ✓
Inception-V4 [48] ✓ ✓ ✓
Inception-ResNet-V2 [48] ✓
DenseNet201 [49] ✓
DenseNet161 [49] ✓
VGG-16 bn [50] ✓ ✓ ✓
VGG-13 bn [50] ✓
MobileNet-V2 [51] ✓
EfficientNet-b1 [52] ✓
EfficientNet-b2 [52] ✓
EfficientNet-b3 [52] ✓
EfficientNet-b4 [52] ✓
EfficientNet-b5 [52] ✓ ✓

Appendix C CS-UNet Complexity

CS-UNet is a flexible method that can use different CNN families in the CNN encoder branch. As a result,
the total number of parameters of CS-UNet can vary depending on the specific CNN encoder branch chosen.
Table 14 summarizes the parameters for different CNN branches used in CS-UNet for this study.

Appendix D Segmentation Examples of Super and EBC Datasets
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Table 14 The number of parameters of CS-UNet based on different
CNN families in CNN encoder branch.

CNN encoder branch # of Params (M) of CS-UNet
DenseNet201 [49] 50.98
DenseNet161 [49] 59.99
EfficientNet-b0 [52] 33.68
EfficientNet-b1 [52] 36.18
EfficientNet-b2 [52] 37.43
EfficientNet-b3 [52] 40.48
EfficientNet-b4 [52] 47.44
EfficientNet-b5 [52] 58.34
Inception-V4 [48] 73.11
Inception-ResNet-V2 [48] 86.29
SENet-154 [46] 145.83
SE ResNet-50 [46] 58.83
SE ResNet-152 [46] 97.56
SE ResNeXt-50 32x4d [47] 58.3
SE ResNeXt-101 32x4d [47] 79.7
SE ResNet-101 [46] 80.07
ResNeXt-101 32x8d [47] 119.53
MobileNet-V2 [51] 33.36
VGG-13 bn [50] 39.64
VGG-16 bn [50] 44.96
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Fig. 7 (a) examples of the training and test images of the Super datasets [6], where the training image of Super-3 is outlined in
red. (b) the best segmentation masks of the test images when CS-UNet is trained with Super-1, Super-2, and Super-3 dataset,
where the left is pre-trained with ImageNet and the right is pre-trained with microscopy images. The CNN/Transformer
encoders and the IoU score of the best model are above the segmentation mask of each experiment. The green triangle points
to the area where the ImageNet (but not the microscopy) model incorrectly segmented the secondary precipitates. The yellow
triangle points to the area where the ImageNet (but not the microscopy) model incorrectly segmented the tertiary precipitates.
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Fig. 8 The test images of Super-4 have different imaging conditions than those of the training images. The left column shows
the test images of Super-4 [6]. The accuracy mask colors are the same as those in Figure 7. The middle column shows the
IoU accuracy masks for the best ImageNet model. The right column shows the same for the best microscopy model. Each row
shows the test image and accuracy masks of the same image. The green arrow shows an example where the model was over-
segmented and where the microscopy model accurately segmented the secondary precipitate. The yellow color indicates incorrect
identification of a tertiary precipitate as a secondary precipitate. The maroon color indicates where the model improperly
identified a secondary precipitate as a tertiary precipitate. The cyan color indicates where the model over-segmented the
secondary precipitates.
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Fig. 9 (a) shows examples of the train and test images in the EBC datasets, where the left column represents the training
set and the right column represents the test set. The single training image for EBC-3 is outlined in red. (b) shows the best
segmentation masks of CS-UNet for each EBC dataset and for each pre-training dataset. The CNN/Transformer encoders and
the IoU score is above the segmentation mask of each test. For EBC-1/2 (the second/third rows), the segmentation masks of CS-
UNet with either pre-training datasets are able to distinguish between the substrate and the thermally grown oxide layer. For
EBC-3 (the last row), CS-UNet pre-trained with ImageNet is not able to distinguish between the substrate and the thermally
grown oxide layer, which made it difficult to accurately measure oxide thickness after simple morphological operations.
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