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Abstract

CS-UNet is a U-shaped image-segmentation algorithm
with parallel CNN and Transformer encoders. This algo-
rithm leverages the relative strength of CNN and Trans-
formers, and enables flexible combination of encoders pre-
trained on different datasets to extract the maximum benefit
of transfer-learning. CS-UNet is evaluated for its segmen-
tation accuracy on microscopy images of materials science.
The performance of CS-UNet is comparable or better than
state-of-the-art algorithms based on CNN or Transformer
encoders. Pre-training the encoders of CS-UNet on mi-
croscopy images further improves its performance in out-
of-distribution learning and one-shot learning. The Inter-
section over Union (IoU) accuracy of nickel-based super-
alloy images is improved from 77.89% to 82.13% for out-of-
distribution learning and IoU accuracy of environmental-
barrier-coating images is improved from 65.9% to 70.45%
for one-shot learning. This suggests that Transformer and
CNN complement each other and pre-training on images
with similar attributes is beneficial to the downstream tasks.
The implementation is freely available1.

1. Introduction

Deep Learning (DL) has been widely applied to complex
systems because of its ability to extract important informa-
tion automatically. Researchers have applied DL algorithms
to image analysis to identify structures and to determine the
relationship between microstructure and performance [1].
DL has been demonstrated to complement physics-based
methods for materials design. However, DL requires large
amount of training data while the limited number of mi-
croscopy images tends to reduce its effectiveness. Learning
techniques, such as transfer-learning, multi-fidelity model-
ing, and active learning, were developed to make DL ap-
plicable to smaller datasets [1, 2]. Transfer-learning uses

1https://github.com/Kalrfou/SwinT-pretrained-
microscopy-models

the parameters of a model pre-trained on a larger dataset to
initialize a model trained on a smaller dataset for a down-
stream task. For example, a Convolutional Neural Network
(CNN) pre-trained on natural images can be used to initial-
ize a neural network for image segmentation such as UNet
to improve its precision and reduce the training time.

In recent years, attention-based neural networks called
Transformers are widely adopted in computer vision. While
CNN extracts features from local regions of images using
convolution filters to capture the spatial relation between
the pixels, Transformer divides an image into patches and
feeds them into a Transformer-based encoder to capture the
long-range relation between pixels across the images [3, 4].
Thus, it is possible that a combination of CNN and Trans-
former may be more effective in transfer-learning than ei-
ther of the models alone.

In this paper, we present a segmentation algorithm called
CS-UNet that includes parallel CNN and Transformer en-
coders in a U-shaped encoder-decoder architecture. The
parameters of the encoders are initialized from models pre-
trained on natural or microscopy images. Each encoder
transforms the input image into a latent representation vec-
tor to extract semantic information. Each decoder maps the
extracted information back to each pixel in the input image
to generate a pixel-wise classification of the image [1, 5].
The output of the CNN and Transformer encoders are fused
before connecting to the decoder. CS-UNet allows great
flexibility in combining different types of CNN and Trans-
former encoders pre-trained on different types of data to al-
low optimal choices of encoders for the segmentation tasks.

Encoder-decoder architecture allows pre-training to im-
prove segmentation accuracy. Pre-training with in-domain
images should improve microscopy image segmentation
since natural images has high-level features that do not exist
in microscopy images. Recent work by Stuckner et al. [6]
confirmed the benefit of pre-training CNN encoders on a
microscopy dataset called MicroNet with over 100,000 im-
ages. They evaluated the CNN encoders with the segmenta-
tion of nickel-based super alloy (Super) and environmental
barrier coating (EBC) images. Their tests showed higher
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accuracy in Intersection over Union (IoU) for one-shot and
few-shot learning and for out-of-distribution images that
have different compositions, etching, and imaging condi-
tions than the training images.

To evaluate the performance of CS-UNet, we pre-
trained CNN and Transformer encoders on different types
of datasets and performed segmentation on the same test
sets used by Stuckner et al. [6]. We chose the tiny ver-
sion of Swin-Transformer – Swin-T [7] as our Transformer
encoder. While we can initialize the CNN encoders using
the CNN models of Stuckner et al. [6], we are unable to
obtain their dataset MicroNet to train our Swin-T encoder.
To this end, we created a similar pre-training dataset with
about 50,000 microscopy images in 74 classes, which we
will refer to as MicroLite.

Our experiments showed that CS-UNet has similar or
better accuracy than the state-of-the-art algorithms based on
CNN or Transformer encoders including the CNN encoders
evaluated in Stuckner et al. [6] .

2. Related Work
CNN uses the convolution operators to provide translational
equivariance but its local receptive field has limitation in
capturing long-range relation between pixels [4]. In recent
years, Transformer [8] has been used in place of CNN for
computer vision (CV) tasks to overcome this limitation [3]
in areas such as image recognition, image segmentation [9],
object detection [10, 11], image super-resolution, and image
generation [12].

In recent years, many variations of U-shaped networks
have been used in image segmentation. U-Net is a Fully
Convolutional Network (FCN) [13, 14], which is a sym-
metric, U-shaped, encoder-decoder neural network for se-
mantic image segmentation. U-Net typically consists of a
down-sampling encoder and an up-sampling decoder struc-
ture and a “skip connection” between them. These connec-
tions copy feature maps from the encoder and concatenate
them with the feature maps in the decoder. Transformer en-
coder was used in SegFormer [15], which is a semantic seg-
mentation framework that combines Transformer encoders
with lightweight MultiLayer Perceptron (MLP) decoders.

CNN and Transformer were combined in Tran-
sUNet [16], which is a U-shaped architecture that employs a
hybrid CNN-Transformer encoder followed by multiple up-
sampling layers in the CNN decoder. This method leverages
both detailed high-resolution spatial information from CNN
features and the global context encoded by Transformers.
The TransUNet architecture includes 12 ViT [3] layers in
the encoder, which encodes tokenized image patches ob-
tained from the CNN layers. These encoded features are
then up-sampled in the decoder to generate the final seg-
mentation map, with skip-connections incorporated. Tran-
sUNet achieved high performance compared with the CNN-

based models.
Swin-Unet [17] uses only Transformer encoders in its U-

shaped encoder-decoder architecture for medical image seg-
mentation. Swin-Unet includes skip-connections for local-
global semantic-feature learning by feeding the tokenized
image patches into the model. Both the encoder and de-
coder structures of Swin-Unet were inspired by the hierar-
chical Swin-Transformer [7] with shifted windows.

In summary, the hybrid architectures mentioned above
either replace CNN with a Transformer in the encoder [18]
or stack a CNN with a Transformer sequentially to form
a new encoder [16]. Replacing CNN with a Transformer
in the encoder gives the ability to model long distance de-
pendency in the network. However, it results in a lack of
detailed texture feature extraction due to the removal of
CNN in the encoder. Stacking CNN with a Transformer
to form a new encoder fails to account for the complemen-
tary relationship between the global modeling capability of
self-attention and the local modeling capability of convolu-
tion. Instead, they treat the convolution operation and self-
attention as two separate and unrelated operations [19, 20].

3. Methodology

In this section, we give details on how CS-UNet is imple-
mented, how the dataset MicroLite is created, and how the
encoders of CS-UNet are pre-trained.

3.1. CS-UNet Architecture

CS-UNet, as shown in Figure 1, is such a hybrid model that
consists of CNN encoders, Transformer encoders, bottle-
necks, Transformer decoders, and skip connections. The
CNN encoders extract low-level features and the Swin-T
encoders extract global contextual features. Each Swin-
T encoder operates on the input image divided into non-
overlapping patches, applying self-attention mechanisms to
capture global dependencies. The Swin-T encoders capture
long-range dependencies and contextual information from
the entire image at different scales.

The decoder is similar to that of Swin-Unet[17], which
employs the patch-expanding layer to up-sample the ex-
tracted deep features by reshaping the feature maps of adja-
cent dimensions to form a higher-resolution feature map,
which effectively achieves a 2× up-sampling. Addition-
ally, it reduces the feature dimension to half of the origi-
nal dimension. This allows the decoder to reconstruct the
output with increased spatial resolution while reducing the
feature dimension for efficient processing. The final patch-
expanding layer further performs a 4× up-sampling to re-
store the resolution of the feature maps to match the input
resolution (W × H). Finally, a linear projection layer is
applied to these up-sampled features to generate pixel-level
segmentation predictions. Different CNN families can be



Figure 1. CS-UNet architecture includes CNN and Swin-T encoders, bottlenecks, skip connections, and Swin-T decoder.

used in the encoder part such as EfficientNet, ResNet, Mo-
bileNet, DenseNet, VGG, and Inception. We initialize CNN
weights using MicroNet and the transformer weights using
MicroLite.

3.2. Pre-training Dataset

The MicroLite images were collected from multiple sources
including images from different materials and compounds
using several measurement techniques such as light mi-
croscopy, SEM, TEM, and X-ray. MicroLite aggregates
the Aversa dataset [21], UltraHigh Carbon Steel Micro-
graph [22], SEM images from the Materials Data Reposi-
tory, and the images from some recent publications [23–30].
The Aversa dataset includes over 25,000 SEM microscopy
images in 10 classes, where each class consists of images in
different scales (including 1, 2, 10, 20 um and 100, 200 nm)
and contrast. To properly classify these images, we used
a pre-trained VGG-16 model to extract feature maps from
these images and used a K-means algorithm to cluster the
feature maps so that images with similar feature maps are
grouped in the same class. After the pre-processing step,

we obtained 53 classes. The authors of Aversa dataset man-
ually classified a small set of the images (1038) into a hi-
erarchical dataset, where the 10 classes are further divided
into 27 subclasses [21]. Our classification of these 1038
images is largely consistent with the manually assigned sub-
classes. Note that we have more classes since we processed
the entire Aversa dataset. In total, MicroLite includes about
50,000 microscopy images labelled in 74 classes.

3.3. Pre-train Swin-T Encoders

We pre-trained Swin Transformers on microscopy images
on classification tasks so that it can be transferred to seg-
mentation tasks. The classification tasks use Swin-T, which
is the tiny version of the Swin Transformer. Swin-T has
two architectures: the original Swin-T with [2,2,6,2] trans-
former blocks and the intermediate network with [2,2,2,2]
transformer blocks. We speculate that intermediate network
may be enough for microscopy analysis tasks since the ear-
lier layers learn corner edges and shapes, the intermediate
layers learn the texture or patterns, and deeper network lay-
ers in the original models learn the high-level features. The



Table 1. The top / average performance (IoU) of UNet++ / UNet pre-trained on MicroNet [6], Transformer-based algorithms pre-trained
on MicroLite, and CS-UNet pre-trained on MicroNet and MicroLite. The highest IoU percentages are shown in bold font.

Test Set UNet++ / UNet Transformer top Transformer algo. CS-UNet CNN of top CS-UNet
Super-1 96.4% / 95.89% 95.72% / 94.84% Swin-Unet 96.43% / 96.14% InceptionV4
Super-2 94.2% / 95.24% 95.16% / 93.53% TransDeepLabV3+ 96.06% / 95.7% VGG16 bn
Super-3 93.0% / 72.2% 92.23% / 76.39% TransDeepLabV3+ 93.5% / 77.99% EfficientNet-b4
Super-4 78.5% / 74.57% 78.91% / 73.57% Swin-Unet 82.13% / 75.08% EfficientNet-b3
EBC-1 97.6% / 95.17% 96.59% / 93.01% TransDeepLabV3+ 97.66% / 95.98% SE ResNet152
EBC-2 93.3% / 84.6% 91.11% / 84.3% TransDeepLabV3+ 92.82% / 86.73% SE ResNet-101
EBC-3 65.9% / 42.58% 82.13% / 56.72% Swin-Unet 70.46% / 45.69% SE ResNeXt-101 32x4d

original and intermediate Swin-T models were pre-trained
on MicroLite from scratch, where the model weights are
randomly initialized. The two models were also pre-trained
on ImageNet and fine-tuned on MicroLite.

The pre-training step uses an AdamW optimizer for 30
epochs with a cosine-decay learning-rate scheduler with 5
epochs of linear warm-up and batch size of 128. The initial
learning rate is 10−3 and weight decay is 0.05. The fine-
tuning step also uses an AdamW optimizer for 30 epochs
with a batch size of 128 but the learning rate is reduced to
10−5 and the weight decay is reduced to 10−8. Models were
trained until there was no improvement to the validation
score using an early stopping criterion with a patience of 5
epochs. Training data had been augmented using albumen-
tations library, which included random changes to the con-
trast and the brightness, vertical and horizonal flips, photo-
metric distortions, and added noise. Swin-T models were
trained by classifying microscopy images into 74 different
classes. Swin-T models were either pre-trained on Ima-
geNet and fine-tuned on MicroLite, or trained with Micro-
Lite with randomized parameters. The training stops when
the validation accuracy does not improve after 5 epochs.
The model accuracy is evaluated using the top-1 and top-
5 accuracy. The top-1 accuracy measures the percentage of
test samples for which the correct label is predicted while
the top-5 accuracy measures the percentage of correct la-
beling in the top five predictions. All segmentation models
in this study were trained using PyTorch [31].

4. Result

We evaluated CS-UNet by comparing its performance with
the results of Stuckner et al. [6]’s 7 microscopy datasets de-
rived from two materials: nickel-based super-alloys (Super)
and Environmental Barrier Coatings (EBC). Super datasets
have 3 classes: matrix, secondary, and tertiary. EBC
datasets have two classes: the oxide layer and the back-
ground (non-oxide) layer. Super-1 and EBC-1 contain the
full dataset labeled for their respective materials. Super-2

and EBC-2 have only 4 images in the training set to evaluate
the performance of few-shot learning. Super-3 and EBC-
3 have only 1 image in the training set to evaluate perfor-
mance of one-shot learning. Super-4 have test images taken
under different imaging and sample conditions to evaluate
the performance of out-of-distribution learning. EBC and
Super datasets were augmented in ways similar to Stucker
et al. [6], which includes random cropping, random changes
to contrast, brightness, and gamma, and added blurring or
sharpening. EBC dataset was horizontally flipped and Su-
per dataset was randomly flipped and rotated.

Table 1 compares the top and average performance of
UNet++ / UNet pre-trained on MicroNet (Figure 3–5 in [6]),
segmentation algorithms using Transformer (Swin-Unet,
TransDeepLabV3+, and HiFormer) pre-trained on Micro-
Lite, and CS-UNet pre-trained on MicroNet and MicroLite.
The top results for each test are shown in bold font. CS-
UNet has the best performance in most experiments except
EBC-2 and EBC-3. For experiments with ample training
data such as Super-1 and EBC-1, the difference between
UNet++/UNet, Transformer, and CS-UNet is small. For
few-shot learning experiments such as Super-2 and EBC-
2, the accuracy gain of CS-UNet is modest. For one-shot
learning experiments, the result is mixed, where CS-UNet
has modest improvement in Super-3 while significant gain
in EBC-3. For out of context learning, CS-UNet shows sig-
nificant improvement over UNet or Transformer.

5. Conclusion

Our results show that CS-UNet is more consistent than
the prior algorithms. CS-UNet is similar or better than
UNet++/UNet in all experiments and it is better than Trans-
formers for most experiments. Though MicroLite has less
than half the number of images in MicroNet, CS-UNet and
Transformer models pre-trained on MicroLite has compara-
ble or better performance than that of UNet++/UNet models
pre-trained on MicroNet.
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